Marcos Tostado-Véliz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/993579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient solution of many-objective Home Energy Management systems. International Journal of Electrical Power and Energy Systems, 2022, 136, 107666.	3.3	42
2	An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks. Energy Reports, 2022, 8, 582-604.	2.5	61
3	A Proposed Uncertainty Reduction Criterion of Renewable Energy Sources for Optimal Operation of Distribution Systems. Applied Sciences (Switzerland), 2022, 12, 623.	1.3	5
4	Multi-energy microgrid optimal operation with integrated power to gas technology considering uncertainties. Journal of Cleaner Production, 2022, 333, 130174.	4.6	30
5	Coot Bird Algorithms-Based Tuning PI Controller for Optimal Microgrid Autonomous Operation. IEEE Access, 2022, 10, 6442-6458.	2.6	20
6	A mixed-integer-linear-logical programming interval-based model for optimal scheduling of isolated microgrids with green hydrogen-based storage considering demand response. Journal of Energy Storage, 2022, 48, 104028.	3.9	37
7	The Probabilistic Optimal Integration of Renewable Distributed Generators Considering the Time-Varying Load Based on an Artificial Gorilla Troops Optimizer. Energies, 2022, 15, 1302.	1.6	17
8	Uncertainty-aware day-ahead scheduling of microgrids considering response fatigue: An IGDT approach. Applied Energy, 2022, 310, 118611.	5.1	20
9	Manta Ray Foraging Optimization for the Virtual Inertia Control of Islanded Microgrids Including Renewable Energy Sources. Sustainability, 2022, 14, 4189.	1.6	11
10	Review of Bioenergy Potential from the Agriculture Sector in Iraq. Energies, 2022, 15, 2678.	1.6	7
11	Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm. Energy, 2022, 247, 123530.	4.5	34
12	Enhanced block-sparse adaptive Bayesian algorithm based control strategy of superconducting magnetic energy storage units for wind farms power ripple minimization. Journal of Energy Storage, 2022, 50, 104208.	3.9	9
13	On Optimal Settings for a Family of Runge–Kutta-Based Power-Flow Solvers Suitable for Large-Scale Ill-Conditioned Cases. Mathematics, 2022, 10, 1279.	1.1	0
14	Home energy management system considering effective demand response strategies and uncertainties. Energy Reports, 2022, 8, 5256-5271.	2.5	25
15	Frequency control of the islanded microgrid based on optimised model predictive control by PSO. IET Renewable Power Generation, 2022, 16, 2088-2100.	1.7	12
16	Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm. Mathematics, 2022, 10, 1626.	1.1	33
17	A novel intervalâ€based formulation for optimal scheduling of microgrids with pumpedâ€hydro and battery energy storage under uncertainty. International Journal of Energy Research, 2022, 46, 12854-12870.	2.2	5
18	A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations. Energy, 2022, 253, 124219.	4.5	33

Marcos Tostado-VéLiz

#	Article	IF	CITATIONS
19	A Stochastic-IGDT model for energy management in isolated microgrids considering failures and demand response. Applied Energy, 2022, 317, 119162.	5.1	38
20	A novel hybrid lexicographic-IGDT methodology for robust multi-objective solution of home energy management systems. Energy, 2022, 253, 124146.	4.5	19
21	Intrinsic Characteristics of Forward Simulation Modeling Electric Vehicle for Energy Analysis. Electricity, 2022, 3, 202-219.	1.4	5
22	Operation of energy hubs with storage systems, solar, wind and biomass units connected to demand response aggregators. Sustainable Cities and Society, 2022, 83, 103974.	5.1	45
23	Optimal energy management of cooperative energy communities considering flexible demand, storage and vehicle-to-grid under uncertainties. Sustainable Cities and Society, 2022, 84, 104019.	5.1	45
24	Uncertainty-aware energy management strategies for PV-assisted refuelling stations with onsite hydrogen generation. Journal of Cleaner Production, 2022, 365, 132869.	4.6	8
25	Hybrid adaptive controlled flywheel energy storage units for transient stability improvement of wind farms. Journal of Energy Storage, 2022, 54, 105262.	3.9	7
26	Two Efficient and Reliable Power-Flow Methods With Seventh Order of Convergence. IEEE Systems Journal, 2021, 15, 1026-1035.	2.9	11
27	An improved version of the Continuous Newton's method for efficiently solving the Power-Flow in Ill-conditioned systems. International Journal of Electrical Power and Energy Systems, 2021, 124, 106389.	3.3	9
28	Efficient and Reliable Power-Flow Solution Using Recursive Formula. IEEE Systems Journal, 2021, 15, 3929-3937.	2.9	1
29	A comprehensive electrical-gas-hydrogen Microgrid model for energy management applications. Energy Conversion and Management, 2021, 228, 113726.	4.4	59
30	A Novel Family of Efficient Power-Flow Methods With High Convergence Rate Suitable for Large Realistic Power Systems. IEEE Systems Journal, 2021, 15, 738-746.	2.9	9
31	Power flow solution of Ill-conditioned systems using current injection formulation: Analysis and a novel method. International Journal of Electrical Power and Energy Systems, 2021, 127, 106669.	3.3	9
32	A novel methodology for comprehensive planning of battery storage systems. Journal of Energy Storage, 2021, 37, 102456.	3.9	34
33	A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response. Renewable Energy, 2021, 170, 884-896.	4.3	67
34	Hybrid Electric Vehicles: A Review of Existing Configurations and Thermodynamic Cycles. Thermo, 2021, 1, 134-150.	0.6	4
35	On the Applicability of Two Families of Cubic Techniques for Power Flow Analysis. Energies, 2021, 14, 4108.	1.6	5
36	A Common Framework for Developing Robust Power-Flow Methods with High Convergence Rate. Applied Sciences (Switzerland), 2021, 11, 6147.	1.3	0

#	Article	IF	CITATIONS
37	Efficient power scheduling in smart homes using a novel artificial ecosystem optimization technique considering two pricing schemes. International Journal of Emerging Electric Power Systems, 2021, 22, 643-660.	0.6	4
38	Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm. Energies, 2021, 14, 5022.	1.6	30
39	Home energy management in off-grid dwellings: Exploiting flexibility of thermostatically controlled appliances. Journal of Cleaner Production, 2021, 310, 127507.	4.6	31
40	On Various High-Order Newton-Like Power Flow Methods for Well and Ill-Conditioned Cases. Mathematics, 2021, 9, 2019.	1.1	3
41	Parameter Estimation of Modified Double-Diode and Triple-Diode Photovoltaic Models Based on Wild Horse Optimizer. Electronics (Switzerland), 2021, 10, 2308.	1.8	27
42	Optimal Incorporation of Photovoltaic Energy and Battery Energy Storage Systems in Distribution Networks Considering Uncertainties of Demand and Generation. Applied Sciences (Switzerland), 2021, 11, 8231.	1.3	6
43	Optimal electrification of off-grid smart homes considering flexible demand and vehicle-to-home capabilities. Applied Energy, 2021, 298, 117184.	5.1	43
44	A MILP framework for electricity tariff-choosing decision process in smart homes considering †Happy Hours' tariffs. International Journal of Electrical Power and Energy Systems, 2021, 131, 107139.	3.3	33
45	An optimization framework for planning wayside and on-board hybrid storage systems for tramway applications. Journal of Energy Storage, 2021, 43, 103207.	3.9	16
46	A Novel Power Flow Solution Paradigm for Well and Ill-Conditioned Cases. IEEE Access, 2021, 9, 112425-112438.	2.6	5
47	Mann-Iteration Process for Power Flow Calculation of Large-Scale Ill-Conditioned Systems: Theoretical Analysis and Numerical Results. IEEE Access, 2021, 9, 132255-132266.	2.6	2
48	DC Nanogrids for Integration of Demand Response and Electric Vehicle Charging Infrastructures: Appraisal, Optimal Scheduling and Analysis. Electronics (Switzerland), 2021, 10, 2484.	1.8	25
49	Performance Analysis of a Stand-Alone PV/WT/Biomass/Bat System in Alrashda Village in Egypt. Applied Sciences (Switzerland), 2021, 11, 10191.	1.3	9
50	Repowering Feasibility Study of a Current Hybrid Renewable System. Case Study, Galapagos Islands. Electricity, 2021, 2, 487-502.	1.4	6
51	An Adaptive Protection Scheme for Coordination of Distance and Directional Overcurrent Relays in Distribution Systems Based on a Modified School-Based Optimizer. Electronics (Switzerland), 2021, 10, 2628.	1.8	10
52	Parameter Estimation of Static/Dynamic Photovoltaic Models Using a Developed Version of Eagle Strategy Gradient-Based Optimizer. Sustainability, 2021, 13, 13053.	1.6	19
53	A New Methodology for Smoothing Power Peaks Produced by Electricity Demand and a Hydrokinetic Turbine for a Household Load on Grid Using Supercapacitors. World Electric Vehicle Journal, 2021, 12, 235.	1.6	1
54	Solving realistic largeâ€scale illâ€conditioned power flow cases based on combination of numerical solvers. International Transactions on Electrical Energy Systems, 2021, 31, e13194.	1.2	0

#	Article	IF	CITATIONS
55	Exploiting the S-Iteration Process for Solving Power Flow Problems: Novel Algorithms and Comprehensive Analysis. Electronics (Switzerland), 2021, 10, 3011.	1.8	2
56	A powerful power-flow method based on Composite Newton-Cotes formula for ill-conditioned power systems. International Journal of Electrical Power and Energy Systems, 2020, 116, 105558.	3.3	13
57	Allocation of Photovoltaic and Wind Turbine Based DG Units Using Artificial Ecosystem-based Optimization. , 2020, , .		9
58	Parameter Identification of Proton Exchange Membrane Fuel Cell Stacks Using Bonobo Optimizer. , 2020, , .		14
59	Modeling of IPFC in NEPLAN for Power System Control: A Simple Approach. , 2020, , .		Ο
60	Power Flow Approach Based on the S-Iteration Process. IEEE Transactions on Power Systems, 2020, 35, 4148-4158.	4.6	13
61	An efficient and reliable power flow solution method for large scale Ill-conditioned cases based on the Romberg's integration scheme. International Journal of Electrical Power and Energy Systems, 2020, 123, 106264.	3.3	4
62	Promising framework based on multistep continuous Newton scheme for developing robust PF methods. IET Generation, Transmission and Distribution, 2020, 14, 265-274.	1.4	6
63	A Three-Stage Algorithm Based on a Semi-Implicit Approach for Solving the Power-Flow in Realistic Large-Scale ill-Conditioned Systems. IEEE Access, 2020, 8, 35299-35307.	2.6	6
64	An efficient power-flow approach based on Heun and King-Werner's methods for solving both well and ill-conditioned cases. International Journal of Electrical Power and Energy Systems, 2020, 119, 105869.	3.3	11
65	An effective load-flow approach based on Gauss-Newton formulation. International Journal of Electrical Power and Energy Systems, 2019, 113, 573-581.	3.3	12
66	Comparison of various robust and efficient load-flow techniques based on Runge–Kutta formulas. Electric Power Systems Research, 2019, 174, 105881.	2.1	17
67	Several robust and efficient load flow techniques based on combined approach for ill-conditioned power systems. International Journal of Electrical Power and Energy Systems, 2019, 110, 349-356.	3.3	16
68	A Robust Power Flow Algorithm Based on Bulirsch–Stoer Method. IEEE Transactions on Power Systems, 2019, 34, 3081-3089.	4.6	34
69	Robust and efficient approach based on Richardson extrapolation for solving badly initialised/illâ€conditioned powerâ€flow problems. IET Generation, Transmission and Distribution, 2019, 13, 3524-3533.	1.4	12
70	Development of different load flow methods for solving largeâ€scale illâ€conditioned systems. International Transactions on Electrical Energy Systems, 2019, 29, e2784.	1.2	18
71	Developed Newton-Raphson based Predictor-Corrector load flow approach with high convergence rate. International Journal of Electrical Power and Energy Systems, 2019, 105, 785-792.	3.3	35
72	Development of combined Runge–Kutta Broyden's load flow approach for well―and ill onditioned power systems. IET Generation, Transmission and Distribution, 2018, 12, 5723-5729.	1.4	23

#	Article	IF	CITATIONS
73	Impact of overhead line parameters on the short-term voltage stability and its mitigation devices. Renewable Energy and Power Quality Journal, 2017, 1, 797-802.	0.2	0
74	Development and Comparison of Efficient Newton-Like Methods for Voltage Stability Assessment. Electric Power Components and Systems, 0, , 1-16.	1.0	4