
Björn Wängler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9935600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	18F-Labeling of Peptides by means of an Organosilicon-Based Fluoride Acceptor. Angewandte Chemie - International Edition, 2006, 45, 6047-6050.	7.2	205
2	Click-Chemistry Reactions in Radiopharmaceutical Chemistry: Fast & Easy Introduction of Radiolabels into Biomolecules for In Vivo Imaging. Current Medicinal Chemistry, 2010, 17, 1092-1116.	1.2	108
3	Synthesis ofp-(Di-tert-butyl[18F]fluorosilyl)benzaldehyde ([18F]SiFA-A) with High Specific Activity by Isotopic Exchange: A Convenient Labeling Synthon for the18F-Labeling of N-amino-oxy Derivatized Peptides. Bioconjugate Chemistry, 2007, 18, 2085-2089.	1.8	94
4	89Zr, a Radiometal Nuclide with High Potential for Molecular Imaging with PET: Chemistry, Applications and Remaining Challenges. Molecules, 2013, 18, 6469-6490.	1.7	92
5	Multimerization of cRGD Peptides by Click Chemistry: Synthetic Strategies, Chemical Limitations, and Influence on Biological Properties. ChemBioChem, 2010, 11, 2168-2181.	1.3	84
6	In Vivo Evaluation of ¹⁸ F-SiFA <i>lin</i> –Modified TATE: A Potential Challenge for ⁶⁸ Ga-DOTATATE, the Clinical Gold Standard for Somatostatin Receptor Imaging with PET. Journal of Nuclear Medicine, 2015, 56, 1100-1105.	2.8	83
7	One-Step ¹⁸ F-Labeling of Carbohydrate-Conjugated Octreotate-Derivatives Containing a Silicon-Fluoride-Acceptor (SiFA): In Vitro and in Vivo Evaluation as Tumor Imaging Agents for Positron Emission Tomography (PET). Bioconjugate Chemistry, 2010, 21, 2289-2296.	1.8	74
8	One-step 18F-labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nature Protocols, 2012, 7, 1946-1955.	5.5	74
9	From Unorthodox to Established: The Current Status of ¹⁸ F-Trifluoroborate- and ¹⁸ F-SiFA-Based Radiopharmaceuticals in PET Nuclear Imaging. Bioconjugate Chemistry, 2016, 27, 267-279.	1.8	66
10	Kit-Like ¹⁸ F-Labeling of Proteins: Synthesis of 4-(Di- <i>tert</i> -butyl[¹⁸ F]fluorosilyl)benzenethiol (Si[¹⁸ F]FA-SH) Labeled Rat Serum Albumin for Blood Pool Imaging with PET. Bioconjugate Chemistry, 2009, 20, 317-321.	1.8	64
11	<i>para</i> â€Functionalized Arylâ€diâ€ <i>tert</i> â€butylfluorosilanes as Potential Labeling Synthons for ¹⁸ F Radiopharmaceuticals. Chemistry - A European Journal, 2009, 15, 2140-2147.	1.7	62
12	Synthesis and evaluation of (S)-2-(2-[18F]fluoroethoxy)-4-([3-methyl-1-(2-piperidin-1-yl-phenyl)-butyl-carbamoyl]-methyl)-benzoic acid ([18F]repaglinide): a promising radioligand for quantification of pancreatic Î ² -cell mass with positron emission tomography (PET). Nuclear Medicine and Biology, 2004, 31, 639-647.	0.3	54
13	A Universally Applicable ⁶⁸ Ga-Labeling Technique for Proteins. Journal of Nuclear Medicine, 2011, 52, 586-591.	2.8	53
14	Rapid ¹⁸ F-Labeling and Loading of PEGylated Gold Nanoparticles for in Vivo Applications. Bioconjugate Chemistry, 2014, 25, 1143-1150.	1.8	53
15	Oxalic Acid Supported Si– ¹⁸ F-Radiofluorination: One-Step Radiosynthesis of <i>N</i> -Succinimidyl 3-(Di- <i>tert</i> -butyl[¹⁸ F]fluorosilyl)benzoate ([¹⁸ F]SiFB) for Protein Labeling. Bioconjugate Chemistry, 2012, 23, 106-114.	1.8	47
16	Silicon-[18F]Fluorine Radiochemistry: Basics, Applications and Challenges. Applied Sciences (Switzerland), 2012, 2, 277-302.	1.3	40
17	Small Prosthetic Groups in 18 F-Radiochemistry: Useful Auxiliaries for the Design of 18 F-PET Tracers. Seminars in Nuclear Medicine, 2017, 47, 474-492.	2.5	38
18	Synthesis and in Vitro and in Vivo Evaluation of SiFA-Tagged Bombesin and RGD Peptides as Tumor Imaging Probes for Positron Emission Tomography. Bioconjugate Chemistry, 2014, 25, 738-749.	1.8	36

BJöRN WÃ**¤**gler

#	Article	IF	CITATIONS
19	Identification of [¹⁸ F]TRACK, a Fluorine-18-Labeled Tropomyosin Receptor Kinase (Trk) Inhibitor for PET Imaging. Journal of Medicinal Chemistry, 2018, 61, 1737-1743.	2.9	36
20	Next Generation of SiFA <i>lin</i> -Based TATE Derivatives for PET Imaging of SSTR-Positive Tumors: Influence of Molecular Design on In Vitro SSTR Binding and In Vivo Pharmacokinetics. Bioconjugate Chemistry, 2015, 26, 2350-2359.	1.8	35
21	Synthesis and in vitro evaluation of (S)-2-([11C]methoxy)-4-[3-methyl-1-(2-piperidine-1-yl-phenyl)-butyl-carbamoyl]-benzoic acid ([11C]methoxy-repaglinide): a potential l²-cell imaging agent. Bioorganic and Medicinal Chemistry Letters. 2004. 14. 5205-5209.	1.0	34
22	N-(4-(di-tert-butyl[18F]fluorosilyl)benzyl)-2-hydroxy-N,N-dimethylethylammonium bromide ([18F]SiFAN+Brâ^'): A novel lead compound for the development of hydrophilic SiFA-based prosthetic groups for 18F-labeling. Journal of Fluorine Chemistry, 2011, 132, 27-34.	0.9	34
23	Protein labeling with the labeling precursor [18F]SiFA-SH for positron emission tomography. Nature Protocols, 2012, 7, 1964-1969.	5.5	34
24	PESIN Multimerization Improves Receptor Avidities and <i>in Vivo</i> Tumor Targeting Properties to GRPR-Overexpressing Tumors. Bioconjugate Chemistry, 2014, 25, 489-500.	1.8	32
25	Chelating Agents and their Use in Radiopharmaceutical Sciences. Mini-Reviews in Medicinal Chemistry, 2011, 11, 968-983.	1.1	30
26	Synthesis of [18F]SiFB: a prosthetic group for direct protein radiolabeling for application in positron emission tomography. Nature Protocols, 2012, 7, 1956-1963.	5.5	27
27	Synthesis of 2-amino-6-(2-[18F]fluoro-pyridine-4-ylmethoxy)-9-(octyl-β-d-glucosyl)-purine: a novel radioligand for positron emission tomography studies of the O6-methylguanine-DNA methyltransferase (MGMT) status of tumour tissue. Tetrahedron Letters, 2002, 43, 6301-6304.	0.7	24
28	Application of tris-allyl-DOTA in the preparation of DOTA–peptide conjugates. Tetrahedron Letters, 2006, 47, 5985-5988.	0.7	22
29	DOTA derivatives for site-specific biomolecule-modification via click chemistry: Synthesis and comparison of reaction characteristics. Bioorganic and Medicinal Chemistry, 2011, 19, 3864-3874.	1.4	22
30	Tropomyosin receptor kinase inhibitors: an updated patent review for 2016–2019. Expert Opinion on Therapeutic Patents, 2020, 30, 325-339.	2.4	21
31	A Kinome-Wide Selective Radiolabeled TrkB/C Inhibitor for in Vitro and in Vivo Neuroimaging: Synthesis, Preclinical Evaluation, and First-in-Human. Journal of Medicinal Chemistry, 2017, 60, 6897-6910.	2.9	20
32	t-Bu2SiF-Derivatized D2-Receptor Ligands: The First SiFA-Containing Small Molecule Radiotracers for Target-Specific PET-Imaging. Molecules, 2011, 16, 7458-7479.	1.7	19
33	First-in-Human Brain Imaging of [¹⁸ F]TRACK, a PET tracer for Tropomyosin Receptor Kinases. ACS Chemical Neuroscience, 2019, 10, 2697-2702.	1.7	19
34	SiFA-Modified Phenylalanine: A Key Compound for the Efficient Synthesis of 18F-Labelled Peptides. European Journal of Inorganic Chemistry, 2011, 2011, 2238-2246.	1.0	18
35	Radiolabeled Heterobivalent Peptidic Ligands: an Approach with High Future Potential for inâ€vivo Imaging and Therapy of Malignant Diseases. ChemMedChem, 2013, 8, 883-890.	1.6	18
36	Gastrin-Releasing Peptide Receptor- and Prostate-Specific Membrane Antigen-Specific Ultrasmall Gold Nanoparticles for Characterization and Diagnosis of Prostate Carcinoma via Fluorescence Imaging. Bioconjugate Chemistry, 2018, 29, 1525-1533.	1.8	17

BJöRN WÃ**¤**gler

#	Article	IF	CITATIONS
37	Radiosynthesis of [18F]SiFAlin-TATE for clinical neuroendocrine tumor positron emission tomography. Nature Protocols, 2020, 15, 3827-3843.	5.5	17
38	Next Step toward Optimization of GRP Receptor Avidities: Determination of the Minimal Distance between BBN _(7–14) Units in Peptide Homodimers. Bioconjugate Chemistry, 2015, 26, 1479-1483.	1.8	15
39	Design, synthesis and inÂvitro evaluation of heterobivalent peptidic radioligands targeting both GRP- and VPAC1-Receptors concomitantly overexpressed on various malignancies – Is the concept feasible?. European Journal of Medicinal Chemistry, 2018, 155, 84-95.	2.6	14
40	Direct one-step labeling of cysteine residues on peptides with [11C]methyl triflate for the synthesis of PET radiopharmaceuticals. Amino Acids, 2013, 45, 1097-1108.	1.2	13
41	iEDDA Conjugation Reaction in Radiometal Labeling of Peptides with ⁶⁸ Ga and ⁶⁴ Cu: Unexpected Findings. ACS Omega, 2018, 3, 14039-14053.	1.6	12
42	Side-by-Side Comparison of Five Chelators for 89Zr-Labeling of Biomolecules: Investigation of Chemical/Radiochemical Properties and Complex Stability. Cancers, 2021, 13, 6349.	1.7	12
43	Simple and convenient radiolabeling of proteins using a prelabeling-approach with thiol-DOTA. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1926-1929.	1.0	10
44	Fully automated SPE-based synthesis and purification of 2-[18F]fluoroethyl-choline for human use. Nuclear Medicine and Biology, 2011, 38, 165-170.	0.3	9
45	Alpha selective epoxide opening with 18Fâ^: synthesis of 4-(3-[18F]fluoro-2-hydroxypropoxy)benzaldehyde ([18F]FPB) for peptide labeling. Tetrahedron Letters, 2011, 52, 1973-1976.	0.7	9
46	Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for <i>in vivo</i> brain imaging?. Future Medicinal Chemistry, 2013, 5, 1621-1634.	1.1	9
47	Evaluation of an automated double-synthesis module: efficiency and reliability of subsequent radiosyntheses of FHBG and FLT. Nuclear Medicine and Biology, 2012, 39, 586-592.	0.3	7
48	Shuttle–Cargo Fusion Molecules of Transport Peptides and the hD _{2/3} Receptor Antagonist Fallypride: A Feasible Approach To Preserve Ligand–Receptor Binding?. Journal of Medicinal Chemistry, 2014, 57, 4368-4381.	2.9	7
49	Synthesis and Preclinical Evaluation of [¹⁸ F]SiFA-PSMA Inhibitors in a Prostate Cancer Model. Journal of Medicinal Chemistry, 2021, 64, 15671-15689.	2.9	6
50	Automated radiosynthesis of N-succinimidyl 3-(di-tert-butyl[18F]fluorosilyl)benzoate ([18F]SiFB) for peptides and proteins radiolabeling for positron emission tomography. Applied Radiation and Isotopes, 2014, 89, 146-150.	0.7	5
51	Synthetic Strategies Towards O6-Substituted Guanine Derivatives and their Application in Medicine. Current Organic Synthesis, 2005, 2, 215-230.	0.7	4
52	Improving the stability of peptidic radiotracers by the introduction of artificial scaffolds: which structure element is most useful?. Journal of Labelled Compounds and Radiopharmaceuticals, 2015, 58, 395-402.	0.5	4
53	Aiming at the tumor-specific accumulation of MGMT-inhibitors: First description of a synthetic strategy towards inhibitor-peptide conjugates. Tetrahedron Letters, 2020, 61, 151840.	0.7	4
54	Synthesis, in vitro and in vivo evaluation of 18 F-fluoronorimatinib as radiotracer for Imatinib-sensitive gastrointestinal stromal tumors. Nuclear Medicine and Biology, 2018, 57, 1-11.	0.3	3

BJöRN WÃ**¤**gler

#	Article	IF	CITATIONS
55	Identification of a Suitable Peptidic Molecular Platform for the Development of NPY(Y 1)R‧pecific Imaging Agents. ChemMedChem, 2020, 15, 1652-1660.	1.6	2
56	Synthetic approaches towards [18 F]fluoro-DOG1, a potential radiotracer for the imaging of gastrointestinal stromal tumors. Tetrahedron Letters, 2018, 59, 3332-3335.	0.7	1
57	On the Viability of Tadalafil-Based 18F-Radiotracers for In Vivo Phosphodiesterase 5 (PDE5) PET Imaging. ACS Omega, 2021, 6, 21741-21754.	1.6	1
58	Are heterobivalent GRPR- and VPAC1R-bispecific radiopeptides suitable for efficient in vivo tumor imaging of prostate carcinomas?. Bioorganic and Medicinal Chemistry Letters, 2021, 48, 128241.	1.0	1
59	Synthesis, Characterization and In Vitro Evaluation of Hybrid Monomeric Peptides Suited for Multimodal Imaging by PET/OI: Extending the Concept of Charge—Cell Binding Correlation. Pharmaceuticals, 2021, 14, 989.	1.7	1
60	The Exception that Proves the Rule: How Sodium Chelation Can Alter the Charge ell Binding Correlation of Fluoresceinâ€Based Multimodal Imaging Agents. ChemMedChem, 2022, , .	1.6	1