Matthias Finkbeiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9934329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. International Journal of Life Cycle Assessment, 2006, 11, 80-85.	2.2	648
2	Towards Life Cycle Sustainability Assessment. Sustainability, 2010, 2, 3309-3322.	1.6	581
3	Carbon footprinting—opportunities and threats. International Journal of Life Cycle Assessment, 2009, 14, 91-94.	2.2	279
4	Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production, 2014, 69, 34-48.	4.6	198
5	Water Footprinting: How to Address Water Use in Life Cycle Assessment?. Sustainability, 2010, 2, 919-944.	1.6	193
6	Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) "A critique on the water-scarcity weighted water footprint in LCA― Ecological Indicators, 2017, 72, 352-359.	2.6	158
7	Towards life cycle sustainability assessment: an implementation to photovoltaic modules. International Journal of Life Cycle Assessment, 2012, 17, 1068-1079.	2.2	143
8	Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environmental Science & Technology, 2014, 48, 4521-4528.	4.6	135
9	Life Cycle Sustainability Dashboard. Journal of Industrial Ecology, 2012, 16, 680-688.	2.8	123
10	Social aspects for sustainability assessment of technologies—challenges for social life cycle assessment (SLCA). International Journal of Life Cycle Assessment, 2013, 18, 1581-1592.	2.2	122
11	Methodological Challenges in Volumetric and Impactâ€Oriented Water Footprints. Journal of Industrial Ecology, 2013, 17, 79-89.	2.8	104
12	Product environmental footprint—breakthrough or breakdown for policy implementation of life cycle assessment?. International Journal of Life Cycle Assessment, 2014, 19, 266-271.	2.2	95
13	Indirect land use change – Help beyond the hype?. Biomass and Bioenergy, 2014, 62, 218-221.	2.9	95
14	LCA's theory and practice: like ebony and ivory living in perfect harmony?. International Journal of Life Cycle Assessment, 2013, 18, 5-13.	2.2	92
15	How LCA contributes to the environmental assessment of higher order effects of ICT application: A review of different approaches. Journal of Cleaner Production, 2019, 219, 698-712.	4.6	92
16	Defining the baseline in social life cycle assessment. International Journal of Life Cycle Assessment, 2010, 15, 376-384.	2.2	90
17	Enhancing the practical implementation of life cycle sustainability assessment – proposal of a Tiered approach. Journal of Cleaner Production, 2015, 102, 165-176.	4.6	85
18	Life Cycle Costing in Sustainability Assessment—A Case Study of Remanufactured Alternators. Sustainability, 2011, 3, 2268-2288.	1.6	81

#	Article	IF	CITATIONS
19	The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment. International Journal of Life Cycle Assessment, 2014, 19, 601-610.	2.2	79
20	Integrated method to assess resource efficiency – ESSENZ. Journal of Cleaner Production, 2016, 137, 118-130.	4.6	79
21	Addressing Sustainability and Flexibility in Manufacturing Via Smart Modular Machine Tool Frames to Support Sustainable Value Creation. Procedia CIRP, 2015, 29, 514-519.	1.0	78
22	Social organizational LCA (SOLCA)—a new approach for implementing social LCA. International Journal of Life Cycle Assessment, 2015, 20, 1586-1599.	2.2	73
23	The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. International Journal of Life Cycle Assessment, 2011, 16, 929-936.	2.2	72
24	Environmental and Social Life Cycle Assessment of Welding Technologies. Procedia CIRP, 2015, 26, 293-298.	1.0	72
25	Including biodiversity in life cycle assessment – State of the art, gaps and research needs. Environmental Impact Assessment Review, 2017, 67, 88-100.	4.4	72
26	Water Footprint of European Cars: Potential Impacts of Water Consumption along Automobile Life Cycles. Environmental Science & Technology, 2012, 46, 4091-4099.	4.6	70
27	Type III Environmental Declaration Programmes and harmonization ofÂproduct category rules: status quo and practical challenges. Journal of Cleaner Production, 2015, 94, 235-246.	4.6	70
28	Application of the Cereal Unit in a new allocation procedure for agricultural life cycle assessments. Journal of Cleaner Production, 2014, 73, 72-79.	4.6	68
29	Abiotic resource depletion in LCA—background and update of the anthropogenic stock extended abiotic depletion potential (AADP) model. International Journal of Life Cycle Assessment, 2015, 20, 709-721.	2.2	66
30	Application of Life Cycle Assessment for the Environmental Certificate of the Mercedes-Benz S-Class (7) Tj ETQc	0 0,0 rgB] 2:2	Г /Oyerlock 10
31	From Life Cycle Costing to Economic Life Cycle Assessment—Introducing an Economic Impact Pathway. Sustainability, 2016, 8, 428.	1.6	63
32	The cost of green roofs disposal in a life cycle perspective: Covering the gap. Energy, 2012, 48, 406-414.	4.5	61
33	Modeling crop rotation in agricultural LCAs — Challenges and potential solutions. Agricultural Systems, 2015, 138, 66-76.	3.2	58
34	Regional carbon footprints of households: a German case study. Environment, Development and Sustainability, 2016, 18, 577-591.	2.7	57
35	Challenges in Life Cycle Assessment: An Overview of Current Gaps and Research Needs. LCA Compendium, 2014, , 207-258.	0.8	57
36	Embedding "substrate―in environmental assessment of green roofs life cycle: evidences from an application to the whole chain in a Mediterranean site. Journal of Cleaner Production, 2012, 35, 274-287.	4.6	56

#	Article	IF	CITATIONS
37	Integration of Social Aspects in Decision Support, Based on Life Cycle Thinking. Sustainability, 2011, 3, 562-577.	1.6	55
38	Life cycle approach to sustainability assessment: a case study of remanufactured alternators. Journal of Remanufacturing, 2012, 2, 1.	1.6	55
39	Impact Pathways to Address Social Well-Being and Social Justice in SLCA—Fair Wage and Level of Education. Sustainability, 2014, 6, 4839-4857.	1.6	55
40	From the 40s to the 70s—the future of LCA in the ISO 14000 family. International Journal of Life Cycle Assessment, 2013, 18, 1-4.	2.2	53
41	Life Cycle Assessment of welding technologies for thick metal plate welds. Journal of Cleaner Production, 2015, 108, 46-53.	4.6	53
42	Principles for the application of life cycle sustainability assessment. International Journal of Life Cycle Assessment, 2021, 26, 1900-1905.	2.2	53
43	Scoping organizational LCA—challenges and solutions. International Journal of Life Cycle Assessment, 2015, 20, 829-841.	2.2	51
44	Review of Life Cycle Sustainability Assessment and Potential for Its Adoption at an Automotive Company. Sustainability, 2017, 9, 670.	1.6	51
45	Environmental performance of building materials: life cycle assessment of a typical Sicilian marble. International Journal of Life Cycle Assessment, 2010, 15, 104-114.	2.2	50
46	Sustainability Assessment of a Single-Use Plastics Ban. Sustainability, 2020, 12, 3746.	1.6	48
47	Correlation analysis of life cycle impact assessment indicators measuring resource use. International Journal of Life Cycle Assessment, 2011, 16, 74-81.	2.2	46
48	Comparison of Different Monetization Methods in LCA: A Review. Sustainability, 2020, 12, 10493.	1.6	46
49	Product environmental footprint in policy and market decisions: Applicability and impact assessment. Integrated Environmental Assessment and Management, 2015, 11, 417-424.	1.6	45
50	Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility?. Sustainability, 2018, 10, 2898.	1.6	44
51	A Review of Life Cycle Assessment Studies of Electric Vehicles with a Focus on Resource Use. Resources, 2020, 9, 32.	1.6	44
52	The International Standards as the Constitution of Life Cycle Assessment: The ISO 14040 Series and its Offspring. LCA Compendium, 2014, , 85-106.	0.8	40
53	Organizational LCA: the new member of the LCA family—introducing the UNEP/SETAC Life Cycle Initiative guidance document. International Journal of Life Cycle Assessment, 2015, 20, 1045-1047. 	2.2	39
54	Statistical analysis of empirical lifetime mileage data for automotive LCA. International Journal of Life Cycle Assessment, 2016, 21, 215-223.	2.2	39

#	Article	IF	CITATIONS
55	Urban horticulture in retail parks: Environmental assessment of the potential implementation of rooftop greenhouses in European and South American cities. Journal of Cleaner Production, 2018, 172, 3081-3091.	4.6	39
56	Enhancing the Water Accounting and Vulnerability Evaluation Model: WAVE+. Environmental Science & Technology, 2018, 52, 10757-10766.	4.6	39
57	Saving the Planet's Climate or Water Resources? The Trade-Off between Carbon and Water Footprints of European Biofuels. Sustainability, 2015, 7, 6665-6683.	1.6	37
58	Modeling pharmaceutical emissions and their toxicityâ€related effects in life cycle assessment (LCA): A review. Integrated Environmental Assessment and Management, 2019, 15, 6-18.	1.6	37
59	A comprehensive approach towards product and organisation related environmental management tools. International Journal of Life Cycle Assessment, 1998, 3, 169.	2.2	36
60	Life cycle assessment of decarbonization options—towards scientifically robust carbon neutrality. International Journal of Life Cycle Assessment, 2021, 26, 635-639.	2.2	35
61	Calculation of Fair wage potentials along products' life cycle – Introduction of a new midpoint impact category for social life cycle assessment. Journal of Cleaner Production, 2017, 143, 1221-1232.	4.6	34
62	Crop rotations and crop residues are relevant parameters for agricultural carbon footprints. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	34
63	Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply. Bioresource Technology, 2016, 219, 536-544.	4.8	33
64	Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany. Resources Policy, 2017, 53, 283-299.	4.2	33
65	Introducing weights to life cycle sustainability assessment—how do decision-makers weight sustainability dimensions?. International Journal of Life Cycle Assessment, 2019, 24, 530-542.	2.2	33
66	Approach to qualify decision support maturity of new versus established impact assessment methods—demonstrated for the categories acidification and eutrophication. International Journal of Life Cycle Assessment, 2017, 22, 387-397.	2.2	32
67	Renewable electricity targets in selected MENA countries – Assessment of available resources, generation costs and GHG emissions. Energy Reports, 2019, 5, 1470-1487.	2.5	31
68	Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas – GHG emissions and costs. Energy Conversion and Management: X, 2020, 7, 100043.	0.9	31
69	Planetary boundaries for water – A review. Ecological Indicators, 2021, 121, 107022.	2.6	29
70	Sugarcane ethanol production in Malawi: Measures to optimize the carbon footprint and to avoid indirect emissions. Biomass and Bioenergy, 2014, 71, 37-45.	2.9	27
71	EU Product Environmental Footprint—Mid-Term Review of the Pilot Phase. Sustainability, 2016, 8, 92.	1.6	27
72	Are we still keeping it "real� Proposing a revised paradigm for recycling credits in attributional life cycle assessment. International Journal of Life Cycle Assessment, 2018, 23, 181-190.	2.2	27

#	Article	IF	CITATIONS
73	Water footprint of German agricultural imports: Local impacts due to global trade flows in a fifteen-year perspective. Science of the Total Environment, 2019, 662, 521-529.	3.9	26
74	A Regional Socio-Economic Life Cycle Assessment of a Bioeconomy Value Chain. Sustainability, 2020, 12, 1259.	1.6	26
75	The Fifth international conference on ecobalances practical tools and thoughtful principles for sustainability November 6–8, 2002, Tsukuba, Japan. International Journal of Life Cycle Assessment, 2003, 8, 1-5.	2.2	25
76	Resource Efficiency Assessment—Comparing a Plug-In Hybrid with a Conventional Combustion Engine. Resources, 2016, 5, 5.	1.6	25
77	Process on "global guidance for LCA databases― International Journal of Life Cycle Assessment, 2011, 16, 95-97.	2.2	23
78	Characterization of the Cradle to Cradle Certifiedâ,,¢ Products Program in the Context of Eco-labels and Environmental Declarations. Sustainability, 2018, 10, 738.	1.6	23
79	Regional Carrying Capacities of Freshwater Consumption—Current Pressure and Its Sources. Environmental Science & Technology, 2020, 54, 9083-9094.	4.6	23
80	The need for innovation management and decision guidance in sustainable process design. Journal of Cleaner Production, 2018, 172, 2374-2388.	4.6	22
81	Harmonized rules for future LCAs on pharmaceutical products and processes. International Journal of Life Cycle Assessment, 2019, 24, 1040-1057.	2.2	22
82	Characterization of environmental labels beyond the criteria of ISO 14020 series. International Journal of Life Cycle Assessment, 2020, 25, 840-855.	2.2	22
83	High resolution water scarcity analysis for cotton cultivation areas in Punjab, Pakistan. Ecological Indicators, 2020, 109, 105852.	2.6	22
84	The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production. Applied Energy, 2021, 296, 117049.	5.1	22
85	Environmental energy efficiency of single wire and tandem gas metal arc welding. Welding in the World, Le Soudage Dans Le Monde, 2017, 61, 733-743.	1.3	21
86	Life Cycle Assessment of Fungal-Based Composite Bricks. Sustainability, 2021, 13, 11573.	1.6	21
87	End-of-life modelling in life cycle assessment—material or product-centred perspective?. International Journal of Life Cycle Assessment, 2017, 22, 1288-1301.	2.2	20
88	Assessing the Availability of Terrestrial Biotic Materials in Product Systems (BIRD). Sustainability, 2017, 9, 137.	1.6	20
89	The implementation of organizational LCA to internally manage the environmental impacts of a broad product portfolio: an example for a cosmetics, fragrances, and toiletry provider. International Journal of Life Cycle Assessment, 2019, 24, 104-116.	2.2	20
90	Energy efficiency and environmental impacts of high power gas metal arc welding. International Journal of Advanced Manufacturing Technology, 2017, 91, 3503-3513.	1.5	18

#	Article	IF	CITATIONS
91	Biodiversity impact assessment (BIA+) – methodological framework for screening biodiversity. Integrated Environmental Assessment and Management, 2018, 14, 282-297.	1.6	18
92	Development of Eco-factors for the European Union based on the Ecological Scarcity Method. International Journal of Life Cycle Assessment, 2019, 24, 1701-1714.	2.2	18
93	Benefits and obstacles of sustainable product development methods: a case study in the field of urban mobility. Design Science, 2017, 3, .	1.1	17
94	Assessing the Ability of the Cradle to Cradle Certifiedâ,,¢ Products Program to Reliably Determine the Environmental Performance of Products. Sustainability, 2018, 10, 1562.	1.6	17
95	Life cycle assessment of zircon sand. International Journal of Life Cycle Assessment, 2019, 24, 1976-1984.	2.2	17
96	A GIS based method to calculate regionalized land use characterization factors for life cycle impact assessment using LANCA®. International Journal of Life Cycle Assessment, 2020, 25, 1259-1277.	2.2	17
97	Criticality assessment of abiotic resource use for Europe– application of the SCARCE method. Resources Policy, 2020, 67, 101650.	4.2	17
98	The Water Footprint of European Agricultural Imports: Hotspots in the Context of Water Scarcity. Resources, 2019, 8, 141.	1.6	16
99	An environmental assessment of small hydropower in India: the real costs of dams' construction under a life cycle perspective. International Journal of Life Cycle Assessment, 2019, 24, 419-440.	2.2	16
100	Life cycle assessment of ferro niobium. International Journal of Life Cycle Assessment, 2020, 25, 611-619.	2.2	16
101	Obsolescence in LCA–methodological challenges and solution approaches. International Journal of Life Cycle Assessment, 2020, 25, 495-507.	2.2	16
102	Sustainable Welding Process Selection Based on Weight Space Partitions. Procedia CIRP, 2016, 40, 127-132.	1.0	15
103	Facts and figures from road testing the guidance on organizational life cycle assessment. International Journal of Life Cycle Assessment, 2019, 24, 866-880.	2.2	15
104	A framework for environmental decision support in cities incorporating organizational LCA. International Journal of Life Cycle Assessment, 2020, 25, 2204-2216.	2.2	15
105	Carbon footprint of recycled biogenic products: the challenge of modelling CO2removal credits. International Journal of Sustainable Engineering, 2013, 6, 66-73.	1.9	14
106	Life Cycle Assessment of Organizations. LCA Compendium, 2016, , 333-394.	0.8	14
107	Environmental and social life cycle assessment of growing media for urban rooftop farming. International Journal of Life Cycle Assessment, 2021, 26, 2085-2102.	2.2	14
108	A Practical Approach for Social Life Cycle Assessment in the Automotive Industry. Resources, 2019, 8, 146.	1.6	13

#	Article	IF	CITATIONS
109	Cradle-to-grave life cycle assessment of an ibuprofen analgesic. Sustainable Chemistry and Pharmacy, 2020, 18, 100329.	1.6	13
110	A Regionalised Life Cycle Assessment Model to Globally Assess the Environmental Implications of Soil Salinization in Irrigated Agriculture. Environmental Science & Technology, 2020, 54, 3082-3090.	4.6	13
111	The fate of land evaporation – a global dataset. Earth System Science Data, 2020, 12, 1897-1912.	3.7	13
112	Carbon footprint and life cycle assessment of organizations. Journal of Environmental Accounting and Management, 2013, 1, 55-63.	0.3	13
113	The global environmental costs of mining and processing abiotic raw materials and their geographic distribution. Journal of Cleaner Production, 2022, 361, 132232.	4.6	13
114	A comparison of Multi-Regional Input-Output databases regarding transaction structure and supply chain analysis. Journal of Cleaner Production, 2018, 196, 1486-1500.	4.6	12
115	Analyzing Changes in Supply Risks for Abiotic Resources over Time with the ESSENZ Method—A Data Update and Critical Reflection. Resources, 2019, 8, 83.	1.6	12
116	Life-LCA: assessing the environmental impacts of a human being—challenges and perspectives. International Journal of Life Cycle Assessment, 2020, 25, 141-156.	2.2	12
117	Comment to "Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization factor. The AWARE model exampleâ€. International Journal of Life Cycle Assessment, 2020, 25, 663-666.	2.2	12
118	Organizational Life Cycle Assessment of a Service Providing SME for Renewable Energy Projects (PV) Tj ETQq0 0	0 rgBT /Ov £6	verlock 10 Tf
119	A method of calibration of the formic acid monomer concentration in the gas phase. Fresenius' Journal of Analytical Chemistry, 1995, 351, 521-525.	1.5	11
120	ENVIRONMENTAL AUDITING: The Functional Unit in the Life Cycle Inventory Analysis of Degreasing Processes in the Metal-Processing Industry. Environmental Management, 1997, 21, 635-642.	1.2	11
121	Assessing Child Development: A Critical Review and the Sustainable Child Development Index (SCDI). Sustainability, 2015, 7, 4973-4996.	1.6	11
122	Benchmarking and environmental performance classes in life cycle assessment—development of a procedure for non-leather shoes in the context of the Product Environmental Footprint. International Journal of Life Cycle Assessment, 2015, 20, 1640-1648.	2.2	11
123	Comparative life cycle assessment of re-use and replacement for video projectors. International Journal of Life Cycle Assessment, 2018, 23, 82-94.	2.2	11
124	The Sustainable Child Development Index (SCDI) for Countries. Sustainability, 2018, 10, 1563.	1.6	11
125	Application Options of the Sustainable Child Development Index (SCDI)—Assessing the Status of Sustainable Development and Establishing Social Impact Pathways. International Journal of Environmental Research and Public Health, 2018, 15, 1391.	1.2	11
126	Organizational water footprint: a methodological guidance. International Journal of Life Cycle Assessment, 2020, 25, 403-422.	2.2	11

#	Article	IF	CITATIONS
127	Challenges of organizational LCA: lessons learned from road testing the guidance on organizational life cycle assessment. International Journal of Life Cycle Assessment, 2020, 25, 311-331.	2.2	11
128	Criteria-Based Approach to Select Relevant Environmental SDG Indicators for the Automobile Industry. Sustainability, 2020, 12, 8811.	1.6	11
129	Social Organizational Life Cycle Assessment: an approach for identification of relevant subcategories for wine production in Italy. International Journal of Life Cycle Assessment, 2020, 25, 1119-1132.	2.2	11
130	Environmental saving potentials of a smart home system from a life cycle perspective: How green is the smart home?. Journal of Cleaner Production, 2021, 312, 127845.	4.6	11
131	Data collection format for life cycle assessment of the german association of the automotive industry (VDA). International Journal of Life Cycle Assessment, 2003, 8, 379-381.	2.2	10
132	Sustainable Corporate Development Measured by Intangible and Tangible Resources as Well as Targeted by Safeguard Subjects. Procedia CIRP, 2015, 26, 630-634.	1.0	10
133	Adapting Ergonomic Assessments to Social Life Cycle Assessment. Procedia CIRP, 2016, 40, 91-96.	1.0	10
134	Launch of a new report: "Road testing organizational life cycle assessment around the world: applications, experiences and lessons learned― International Journal of Life Cycle Assessment, 2018, 23, 159-163.	2.2	10
135	Consistent normalization approach for Life Cycle Assessment based on inventory databases. Science of the Total Environment, 2020, 703, 134583.	3.9	10
136	Addressing the use and end-of-life phase of pharmaceutical products in life cycle assessment. International Journal of Life Cycle Assessment, 2020, 25, 1436-1454.	2.2	10
137	Environmental Impacts of a Pet Dog: An LCA Case Study. Sustainability, 2020, 12, 3394.	1.6	10
138	Criticality Assessment of the Life Cycle of Passenger Vehicles Produced in China. Circular Economy and Sustainability, 2021, 1, 435-455.	3.3	10
139	Life Cycle Based Comparison of Textile Ecolabels. Sustainability, 2021, 13, 1751.	1.6	10
140	Integrating endocrine-related health effects into comparative human toxicity characterization. Science of the Total Environment, 2021, 762, 143874.	3.9	10
141	Resource Assessment of Renewable Energy Systems—A Review. Sustainability, 2021, 13, 6107.	1.6	10
142	Policy Options for Life Cycle Assessment Deployment in Legislation. LCA Compendium, 2015, , 213-224.	0.8	10
143	Characterization model to assess ocean acidification within life cycle assessment. International Journal of Life Cycle Assessment, 2016, 21, 1463-1472.	2.2	9
144	Preface—a new paradigm for life cycle thinking: exploring sustainability in urban development scenarios. International Journal of Life Cycle Assessment, 2019, 24, 1169-1173.	2.2	9

#	Article	IF	CITATIONS
145	Introducing a product sustainability budget at an automotive company—one option to increase the use of LCSA results in decision-making processes. International Journal of Life Cycle Assessment, 2019, 24, 1461-1479.	2.2	9
146	The product environmental footprint communication at the crossroad: integration into or co-existence with the European Ecolabel?. International Journal of Life Cycle Assessment, 2020, 25, 508-522.	2.2	9
147	Distance-to-target weighting in LCA—A matter of perspective. International Journal of Life Cycle Assessment, 2021, 26, 114-126.	2.2	9
148	Territorial-Based vs. Consumption-Based Carbon Footprint of an Urban District—A Case Study of Berlin-Wedding. Sustainability, 2021, 13, 7262.	1.6	9
149	Selection Criteria for Suitable Indicators for Value Creation Starting with a Look at the Environmental Dimension. Procedia CIRP, 2015, 26, 24-29.	1.0	8
150	An Approach to Determine Missing Life Cycle Inventory Data for Chemicals (RREM). Sustainability, 2022, 14, 3161.	1.6	8
151	Organisational LCA. , 2018, , 481-498.		7
152	Addressing water quality in water footprinting: current status, methods and limitations. International Journal of Life Cycle Assessment, 2021, 26, 157-174.	2.2	7
153	Assessing the environmental performance of ICT-based services: Does user behaviour make all the difference?. Sustainable Production and Consumption, 2022, 31, 828-838.	5.7	7
154	Life Cycle Engineering as a Tool for Design for Environment. , 0, , .		6
155	Ecological Scarcity Method: Adaptation and Implementation for Different Countries. Environmental and Climate Technologies, 2012, 10, 9-15.	0.2	6
156	Amount of water needed to save 1Âm3 of water: life cycle assessment of a flow regulator. Applied Water Science, 2017, 7, 1399-1407.	2.8	6
157	Life Cycle Based CO ₂ Emission Credits: Options for Improving the Efficiency and Effectiveness of Current Tailpipe Emissions Regulation in the Automotive Industry. Journal of Industrial Ecology, 2018, 22, 1066-1079.	2.8	6
158	Hybrid approach for the evaluation of organizational indirect impacts (AVOID): combining product-related, process-based, and monetary-based methods. International Journal of Life Cycle Assessment, 2019, 24, 1058-1074.	2.2	6
159	Adapting the ESSENZ Method to Assess Company-Specific Criticality Aspects. Resources, 2021, 10, 56.	1.6	6
160	Life-LCA: the first case study of the life cycle impacts of a human being. International Journal of Life Cycle Assessment, 2021, 26, 1847-1866.	2.2	6
161	Half-way Point in the Flagship Project "LCA of Organizations―by UNEP/SETAC Life Cycle Initiative. Journal of Life Cycle Assessment Japan, 2015, 11, 97-103.	0.0	6
162	The ResourcePlan—An Instrument for Resource-Efficient Development of Urban Neighborhoods. Sustainability, 2022, 14, 1522.	1.6	6

#	Article	IF	CITATIONS
163	Life-Cycle-Assessment (ISO 14040) in the Context of Environmental Management Systems (ISO 14001). , 0, , .		5
164	Measuring Waterâ€Related Environmental Impacts of Organizations: Existing Methods and Research Gaps. Advanced Sustainable Systems, 2018, 2, 1700157.	2.7	5
165	The First City Organizational LCA Case Study: Feasibility and Lessons Learned from Vienna. Sustainability, 2021, 13, 5062.	1.6	5
166	Considering the Fate of Evaporated Water Across Basin Boundaries—Implications for Water Footprinting. Environmental Science & Technology, 2021, 55, 10231-10242.	4.6	5
167	Sustainable Technologies for Thick Metal Plate Welding. Sustainable Production, Life Cycle Engineering and Management, 2017, , 71-84.	0.2	5
168	LCA Perspectives for Resource Efficiency Assessment. LCA Compendium, 2016, , 179-218.	0.8	5
169	Environmental costs of abiotic resource demand for the EU's low-carbon development. Resources, Conservation and Recycling, 2022, 180, 106057.	5.3	5
170	Assessing overfishing based on the distance-to-target approach. International Journal of Life Cycle Assessment, 2022, 27, 573-586.	2.2	5
171	Life Cycle Engineering and Design for Environment of the Mercedes-Benz C-Class. , 0, , .		4
172	The Effect of Land Use on Availability of Japanese Freshwater Resources and Its Significance for Water Footprinting. Sustainability, 2016, 8, 86.	1.6	4
173	Life Cycle Sustainability Assessment Approaches for Manufacturing. Sustainable Production, Life Cycle Engineering and Management, 2017, , 221-237.	0.2	4
174	Screening Indicators for the Sustainable Child Development Index (SCDI). Sustainability, 2017, 9, 518.	1.6	4
175	Comprehensive approach for evaluating different resource types – Case study of abiotic and biotic resource use assessment methodologies. Ecological Indicators, 2018, 87, 314-322.	2.6	4
176	Organizational Water Footprint to Support Decision Making: a Case Study for a German Technological Solutions Provider for the Plumbing Industry. Water (Switzerland), 2020, 12, 847.	1.2	4
177	A condom's footprint - life cycle assessment of a natural rubber condom. International Journal of Life Cycle Assessment, 2020, 25, 964-979.	2.2	4
178	Germany's global water consumption under consideration of the local safe operating spaces of watersheds worldwide. Cleaner and Responsible Consumption, 2021, 3, 100034.	1.6	4
179	Carbon Offsets: An LCA Perspective. Sustainable Production, Life Cycle Engineering and Management, 2021, , 189-212.	0.2	4
180	Indirect Land Use Change – Science or Mission?. BioResources, 2014, 9, 3755-3756.	0.5	4

#	Article	IF	CITATIONS
181	Assessment of Critical Resource Use in Aircraft Manufacturing. Circular Economy and Sustainability, 2022, 2, 1193-1212.	3.3	4
182	A Systemic View of Future Mobility Scenario Impacts on and Their Implications for City Organizational LCA: The Case of Autonomous Driving in Vienna. Sustainability, 2022, 14, 158.	1.6	4
183	Enhancement of the ESSENZ Method and Application in a Case Study on Batteries. Resources, 2022, 11, 52.	1.6	4
184	Carbon Footprints and Life Cycle Assessments of Inhalers: A Review of Published Evidence. Sustainability, 2022, 14, 7106.	1.6	4
185	Life-Cycle Engineering of Automobile Painting Processes. , 0, , .		3
186	How to Handle Uncertainties and Assumptions in Interpreting LCA Results?. , 1998, , .		3
187	Analysis of the potential for a comprehensive approach towards LCA and EMS in Japan. International Journal of Life Cycle Assessment, 1999, 4, 127.	2.2	3
188	LCA in Japan $\hat{a} \in$ " the past, the present, the future. International Journal of Life Cycle Assessment, 2000, 5, 253.	2.2	3
189	Streamlined Environmental Assessments: Picking the Greenest Option Despite Limited Time and Data at the Federal Environment Agency in Germany. Journal of Environmental Assessment Policy and Management, 2015, 17, 1550024.	4.3	3
190	Evaluating Sustainable Development from a Child's Perspective - A Proposal of Sustainable Child Development Index (SCDI). Procedia CIRP, 2016, 40, 475-480.	1.0	3
191	Introducing "Special Types of Life Cycle Assessment― LCA Compendium, 2016, , 1-9.	0.8	3
192	Life-Cycle Simulation of Automotive Painting Processes. , 1998, , .		2
193	The Spatial Dimension in Life Cycle Assessments. , 1998, , .		2
194	Assessing local impacts of water use on human health: evaluation of water footprint models in the Province Punjab, Pakistan. International Journal of Life Cycle Assessment, 2021, 26, 1027-1044.	2.2	2
195	The research environmental impact disclosure. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2022, 33, 3-5.	1.2	2
196	Modeling the use and end-of-life phase of pharmaceuticals in support of a life cycle inventory analysis – Case study on different antibiotics in Germany. Sustainable Chemistry and Pharmacy, 2022, 25, 100589.	1.6	2
197	Analysing the Impacts of Various Environmental Parameters on the Biodiversity Status of Major Habitats. Sustainability, 2017, 9, 1775.	1.6	1
198	Feasibility of applying the biodiversity impact assessment method BIA+: A case study on freshwater biodiversity impacts resulting from phosphorus and 1,4-DCB emitted during the biodiesel production. Ecological Indicators, 2019, 102, 666-672.	2.6	1

#	Article	lF	CITATIONS
199	Partial Order Analysis of the Government Dependence of the Sustainable Development Performance in Germany's Federal States. , 2017, , 219-228.		1
200	Design for the Environment of Automotive Painting Concepts. , 1998, , .		0
201	Declaration of concern—an unambiguous rebuttal of the LEO-SCS-002 draft standard. International Journal of Life Cycle Assessment, 2013, 18, 302-305.	2.2	0
202	A new captain on the bridge. International Journal of Life Cycle Assessment, 2019, 24, 611-613.	2.2	0
203	Design for Resource Efficiency. , 2012, , 106-109.		0
204	Enhancing the Water Footprint Method to a Region Specific Management Tool. Sustainable Production, Life Cycle Engineering and Management, 2019, , 27-35.	0.2	0