Wladek Minor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/993383/publications.pdf

Version: 2024-02-01

246 papers 42,693 citations

53 h-index 2078 204 g-index

283 all docs 283 docs citations

times ranked

283

39472 citing authors

#	Article	IF	CITATIONS
1	[20] Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology, 1997, 276, 307-326.	1.0	30,205
2	HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 859-866.	2.5	1,822
3	Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology, 2012, 52, 174-182.	2.2	756
4	Multiparametric scaling of diffraction intensities. Acta Crystallographica Section A: Foundations and Advances, 2003, 59, 228-234.	0.3	623
5	Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature, 2005, 438, 1181-1185.	27.8	484
6	Crystal Structure of Soybean Lipoxygenase L-1 at 1.4 à Resolutionâ€,‡. Biochemistry, 1996, 35, 10687-10701	2.5	416
7	Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature, 1991, 354, 37-43.	27.8	329
8	Data mining of metal ion environments present in protein structures. Journal of Inorganic Biochemistry, 2008, 102, 1765-1776.	3.5	273
9	<i>CheckMyMetal</i> : a macromolecular metal-binding validation tool. Acta Crystallographica Section D: Structural Biology, 2017, 73, 223-233.	2.3	268
10	Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nature Protocols, 2014, 9, 156-170.	12.0	254
11	Phosphorylation Regulates SIRT1 Function. PLoS ONE, 2008, 3, e4020.	2.5	244
12	Protein crystallography for nonâ€crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS Journal, 2008, 275, 1-21.	4.7	231
13	In situ proteolysis for protein crystallization and structure determination. Nature Methods, 2007, 4, 1019-1021.	19.0	197
14	Asymmetric Synthesis of 2,3-Dihydro-2-arylquinazolin-4-ones: Methodology and Application to a Potent Fluorescent Tubulin Inhibitor with Anticancer Activity. Journal of Medicinal Chemistry, 2008, 51, 4620-4631.	6.4	184
15	A Novel Family of Sequence-specific Endoribonucleases Associated with the Clustered Regularly Interspaced Short Palindromic Repeats. Journal of Biological Chemistry, 2008, 283, 20361-20371.	3.4	177
16	The Enzyme Function Initiative. Biochemistry, 2011, 50, 9950-9962.	2.5	169
17	Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1. Biochemistry, 1993, 32, 6320-6323.	2.5	162
18	Crystal structure of RhoA–GDP and its functional implications. Nature Structural Biology, 1997, 4, 699-703.	9.7	158

#	Article	IF	Citations
19	Determination of Protein Structures—A Series of Fortunate Events. Biophysical Journal, 2008, 95, 1-9.	0.5	128
20	The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell, 2006, 9, 249-260.	16.8	121
21	Structural and Functional Characterization of Second-Coordination Sphere Mutants of Soybean Lipoxygenase-1â€. Biochemistry, 2001, 40, 7509-7517.	2.5	120
22	Mechanism of Enolase:Â The Crystal Structure of Asymmetric Dimer Enolaseâ^2-Phospho-d-glycerate/Enolaseâ^Phosphoenolpyruvate at 2.0 à Resolutionâ€,‡. Biochemistry, 1997, 36, 12526-12534.	2.5	115
23	NRMT is an $\hat{l}\pm$ -N-methyltransferase that methylates RCC1 and retinoblastoma protein. Nature, 2010, 466, 1125-1128.	27.8	109
24	Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 å resolution. Structure, 1998, 6, 511-519.	3.3	107
25	A public database of macromolecular diffraction experiments. Acta Crystallographica Section D: Structural Biology, 2016, 72, 1181-1193.	2.3	103
26	Human Thymidylate Synthase Is in the Closed Conformation When Complexed with dUMP and Raltitrexed, an Antifolate Drug,. Biochemistry, 2001, 40, 1897-1902.	2.5	100
27	Alternaria alternata allergen Alt a 1 : A unique \hat{l}^2 -barrel protein dimer found exclusively in fungi. Journal of Allergy and Clinical Immunology, 2012, 130, 241-247.e9.	2.9	99
28	Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS Journal, 2013, 280, 5705-5736.	4.7	95
29	The protein structure initiative structural genomics knowledgebase. Nucleic Acids Research, 2009, 37, D365-D368.	14.5	94
30	Structural and functional insight into the universal stress protein family. Evolutionary Applications, 2013, 6, 434-449.	3.1	94
31	Structural and Immunologic Characterization of Ara h 1, a Major Peanut Allergen. Journal of Biological Chemistry, 2011, 286, 39318-39327.	3.4	89
32	Serum albuminsâ€"Unusual allergens. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5375-5381.	2.4	89
33	Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection. Nucleic Acids Research, 2015, 43, 3789-3801.	14.5	89
34	Crystal Structure of Pseudomonas aeruginosa SPM-1 Provides Insights into Variable Zinc Affinity of Metallo-β-lactamases. Journal of Molecular Biology, 2006, 357, 890-903.	4.2	88
35	Characterizing metal-binding sites in proteins with X-ray crystallography. Nature Protocols, 2018, 13, 1062-1090.	12.0	86
36	Double troubleâ€"Buffer selection and <scp>H</scp> isâ€tag presence may be responsible for nonreproducibility of biomedical experiments. Protein Science, 2014, 23, 1359-1368.	7.6	83

#	Article	IF	Citations
37	Single Enantiomer of YK-4-279 Demonstrates Specificity in Targeting the Oncogene EWS-FLI1. Oncotarget, 2012, 3, 172-182.	1.8	83
38	Crystal Structures of Mite Allergens Der f 1 and Der p 1 Reveal Differences in Surface-Exposed Residues that May Influence Antibody Binding. Journal of Molecular Biology, 2009, 386, 520-530.	4.2	79
39	Molecular Determinants for Antibody Binding on Group 1 House Dust Mite Allergens. Journal of Biological Chemistry, 2012, 287, 7388-7398.	3.4	75
40	Strategies for macromolecular synchrotron crystallography. Structure, 2000, 8, R105-R110.	3.3	73
41	Continua of Interactions between Pairs of Atoms in Molecular Crystals. Chemistry - A European Journal, 2006, 12, 1941-1949.	3.3	73
42	Crystal Structure of the MACPF Domain of Human Complement Protein C8α in Complex with the C8γ Subunit. Journal of Molecular Biology, 2008, 379, 331-342.	4.2	70
43	The future of crystallography in drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 125-137.	5.0	70
44	Structure of Human Thymidylate Synthase Suggests Advantages of Chemotherapy with Noncompetitive Inhibitors. Journal of Biological Chemistry, 2001, 276, 14170-14177.	3.4	67
45	Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins. Chemical Science, 2016, 7, 6635-6648.	7.4	67
46	The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods. Journal of Structural and Functional Genomics, 2011, 12, 45-54.	1.2	65
47	Structural Insight into the Mechanism of Substrate Specificity and Catalytic Activity of an HD-Domain Phosphohydrolase: The 5′-Deoxyribonucleotidase YfbR from Escherichia coli. Journal of Molecular Biology, 2008, 378, 215-226.	4.2	62
48	The impact of structural genomics: the first quindecennial. Journal of Structural and Functional Genomics, 2016, 17, 1-16.	1.2	60
49	Measurement errors and their consequences in protein crystallography. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2031-2038.	2.5	59
50	X-ray crystallography over the past decade for novel drug discovery – where are we heading next?. Expert Opinion on Drug Discovery, 2015, 10, 975-989.	5.0	59
51	Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining. IUCrJ, 2014, 1, 179-193.	2.2	58
52	Diffraction data analysis in the presence of radiation damage. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 426-436.	2.5	57
53	Analysis of solvent content and oligomeric states in protein crystalsâ€"does symmetry matter?. Protein Science, 2008, 17, 623-632.	7.6	54
54	Uncovering a Calcium-Regulated Membrane-Binding Mechanism for Soybean Lipoxygenase-1. Biochemistry, 1998, 37, 15481-15490.	2.5	53

#	Article	IF	CITATIONS
55	Expression, Purification and the 1.8Ã Resolution Crystal Structure of Human Neuron Specific Enolase. Journal of Molecular Biology, 2004, 341, 1015-1021.	4.2	53
56	X-ray crystallography: assessment and validation of proteinâ€"small molecule complexes for drug discovery. Expert Opinion on Drug Discovery, 2011, 6, 771-782.	5.0	53
57	Molecular basis for phosphospecific recognition of histone H3 tails by Survivin paralogues at inner centromeres. Molecular Biology of the Cell, 2012, 23, 1457-1466.	2.1	53
58	Crystallography and chemistry should always go together: a cautionary tale of protein complexes with cisplatin and carboplatin. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1965-1979.	2.5	52
59	Substrate Specificity of Mammalian N-Terminal α-Amino Methyltransferase NRMT. Biochemistry, 2012, 51, 5942-5950.	2.5	51
60	Unmet challenges of structural genomics. Current Opinion in Structural Biology, 2010, 20, 587-597.	5.7	49
61	The HP1a Disordered C Terminus and Chromo Shadow Domain Cooperate to Select Target Peptide Partners. ChemBioChem, 2011, 12, 1084-1096.	2.6	49
62	Detect, correct, retract: How to manage incorrect structural models. FEBS Journal, 2018, 285, 444-466.	4.7	49
63	The many faces of radiation-induced changes. Journal of Synchrotron Radiation, 2007, 14, 24-33.	2.4	48
64	A close look onto structural models and primary ligands of metallo- \hat{l}^2 -lactamases. Drug Resistance Updates, 2018, 40, 1-12.	14.4	47
65	Protein purification and crystallization artifacts: The tale usually not told. Protein Science, 2016, 25, 720-733.	7.6	46
66	Identification of Unknown Protein Function Using Metabolite Cocktail Screening. Structure, 2012, 20, 1715-1725.	3.3	45
67	Broadâ€substrate screen as a tool to identify substrates for bacterial Gcn5â€related <i>N</i> â€acetyltransferases with unknown substrate specificity. Protein Science, 2013, 22, 222-230.	7.6	45
68	Structural and bioinformatic analysis of the kiwifruit allergen Act d 11, a member of the family of ripening-related proteins. Molecular Immunology, 2013, 56, 794-803.	2.2	43
69	Refining the macromolecular model – achieving the best agreement with the data from X-ray diffraction experiment. Crystallography Reviews, 2018, 24, 236-262.	1.5	43
70	Structural genomics: keeping up with expanding knowledge of the protein universe. Current Opinion in Structural Biology, 2007, 17, 347-353.	5.7	42
71	Biochemical and Structural Characterization of Apolipoprotein A-I Binding Protein, a Novel Phosphoprotein with a Potential Role in Sperm Capacitation. Endocrinology, 2008, 149, 2108-2120.	2.8	42
72	Crystal Structure of Human Complement Protein C8γ at 1.2 à Resolution Reveals a Lipocalin Fold and a Distinct Ligand Binding Siteâ€,‡. Biochemistry, 2002, 41, 7030-7037.	2.5	41

#	Article	IF	Citations
73	Neutron scattering studies of Cd1â^'xMnxTe (invited). Journal of Applied Physics, 1984, 55, 2305-2309.	2.5	39
74	Targeting a Uniquely Nonspecific Prenyl Synthase with Bisphosphonates to Combat Cryptosporidiosis. Chemistry and Biology, 2008, 15, 1296-1306.	6.0	39
75	Testosterone meets albumin – the molecular mechanism of sex hormone transport by serum albumins. Chemical Science, 2019, 10, 1607-1618.	7.4	38
76	Crystal Structure of RNase T, an Exoribonuclease Involved in tRNA Maturation and End Turnover. Structure, 2007, 15, 417-428.	3.3	37
77	Structural, Functional, and Inhibition Studies of a Gcn5-related N-Acetyltransferase (GNAT) Superfamily Protein PA4794. Journal of Biological Chemistry, 2013, 288, 30223-30235.	3.4	37
78	Albumin-Based Transport of Nonsteroidal Anti-Inflammatory Drugs in Mammalian Blood Plasma. Journal of Medicinal Chemistry, 2020, 63, 6847-6862.	6.4	37
79	The structural genomics experimental pipeline: Insights from global target lists. Proteins: Structure, Function and Bioinformatics, 2004, 56, 201-210.	2.6	36
80	New surface contacts formed upon reductive lysine methylation: Improving the probability of protein crystallization. Protein Science, 2010, 19, 1395-1404.	7.6	35
81	Ligandâ€centered assessment of SARSâ€CoVâ€2 drug target models in the Protein Data Bank. FEBS Journal, 2020, 287, 3703-3718.	4.7	35
82	Safeguarding Structural Data Repositories against Bad Apples. Structure, 2016, 24, 216-220.	3.3	34
83	Data Management in the Modern Structural Biology and Biomedical Research Environment. Methods in Molecular Biology, 2014, 1140, 1-25.	0.9	34
84	100ÂYears later: Celebrating the contributions of x-ray crystallography to allergy and clinical immunology. Journal of Allergy and Clinical Immunology, 2015, 136, 29-37.e10.	2.9	33
85	Data mining of iron(II) and iron(III) bond-valence parameters, and their relevance for macromolecular crystallography. Acta Crystallographica Section D: Structural Biology, 2017, 73, 316-325.	2.3	33
86	Correcting the record of structural publications requires joint effort of the community and journal editors. FEBS Journal, 2016, 283, 4452-4457.	4.7	31
87	Molstackâ€"Interactive visualization tool for presentation, interpretation, and validation of macromolecules and electron density maps. Protein Science, 2018, 27, 86-94.	7.6	31
88	DENZO and SCALEPACK. , 2006, , 226-235.		29
89	The Crystal Structure of N10-Formyltetrahydrofolate Synthetase from Moorella thermoacetica,. Biochemistry, 2000, 39, 3920-3926.	2.5	27
90	Benefits of Structural Genomics for Drug Discovery Research. Infectious Disorders - Drug Targets, 2009, 9, 459-474.	0.8	26

#	Article	lF	Citations
91	Structure of human thymidylate synthase under low-salt conditions. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 622-627.	2.5	25
92	<i>Fitmunk</i> : improving protein structures by accurate, automatic modeling of side-chain conformations. Acta Crystallographica Section D: Structural Biology, 2016, 72, 266-280.	2.3	25
93	The Integrated Resource for Reproducibility in Macromolecular Crystallography: Experiences of the first four years. Structural Dynamics, 2019, 6, 064301.	2.3	25
94	Harvesting the high-hanging fruit: the structure of theYdeNgene product fromBacillus subtilisat 1.8â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1101-1107.	2.5	23
95	An extremely SAD case: structure of a putative redox-enzyme maturation protein fromArchaeoglobus fulgidusat 3.4â€Ä resolution. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 348-354.	2.5	23
96	Structural and Functional Characterizations of SsgB, a Conserved Activator of Developmental Cell Division in Morphologically Complex Actinomycetes. Journal of Biological Chemistry, 2009, 284, 25268-25279.	3.4	23
97	To automate or not to automate: this is the question. Journal of Structural and Functional Genomics, 2010, 11, 211-221.	1.2	23
98	Structural Analysis of Der p 1–Antibody Complexes and Comparison with Complexes of Proteins or Peptides with Monoclonal Antibodies. Journal of Immunology, 2015, 195, 307-316.	0.8	23
99	The Quality and Validation of Structures from Structural Genomics. Methods in Molecular Biology, 2014, 1091, 297-314.	0.9	23
100	Crystallization and preliminary structure analysis of an insect virus with T=4 quasi-symmetry: Nudaurelia capensis ω virus. Acta Crystallographica Section B: Structural Science, 1991, 47, 23-29.	1.8	22
101	Crystal structure of a putative isochorismatase hydrolase from Oleispira antarctica. Journal of Structural and Functional Genomics, 2012, 13, 27-36.	1.2	22
102	The major cockroach allergen Bla g 4 binds tyramine and octopamine. Molecular Immunology, 2014, 60, 86-94.	2.2	22
103	Automatic recognition of ligands in electron density by machine learning. Bioinformatics, 2019, 35, 452-461.	4.1	22
104	Mechanism of N ¹⁰ â€formyltetrahydrofolate synthetase derived from complexes with intermediates and inhibitors. Protein Science, 2012, 21, 219-228.	7.6	21
105	Classification, substrate specificity and structural features of D-2-hydroxyacid dehydrogenases: 2HADH knowledgebase. BMC Evolutionary Biology, 2018, 18, 199.	3.2	21
106	Catalytic Cysteine of Thymidylate Synthase Is Activated upon Substrate Bindingâ€,‡. Biochemistry, 2000, 39, 6969-6978.	2.5	20
107	Asymmetric synthesis and evaluation of a hydroxyphenylamide voltage-gated sodium channel blocker in human prostate cancer xenografts. Bioorganic and Medicinal Chemistry, 2012, 20, 2180-2188.	3.0	20
108	Antigenic Determinants of Der p 1: Specificity and Cross-Reactivity Associated with IgE Antibody Recognition. Journal of Immunology, 2017, 198, 1334-1344.	0.8	20

7

#	Article	IF	Citations
109	Removal of salt from a salt-induced protein crystal without cross-linking. Preliminary examination of "desalted" crystals of phosphoglucomutase by x-ray crystallography at low temperature. Biochemistry, 1991, 30, 6866-6875.	2.5	19
110	Structure of Bacillus subtilis YXKOâ€"A member of the UPF0031 family and a putative kinase. Journal of Structural Biology, 2002, 139, 161-170.	2.8	19
111	Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site. Molecular Immunology, 2016, 71, 143-151.	2.2	19
112	The structure determination of Sindbis virus core protein using isomorphous replacement and molecular replacement averaging between two crystal forms. Acta Crystallographica Section A: Foundations and Advances, 1992, 48, 430-442.	0.3	17
113	Kinetic, Spectroscopic, and Structural Investigations of the Soybean Lipoxygenase-1 First-Coordination Sphere Mutant, Asn694Glyâ€,‡. Biochemistry, 2006, 45, 10233-10242.	2.5	17
114	Crystal structures of TM0549 and NE1324-two orthologs of E. coliAHAS isozyme III small regulatory subunit. Protein Science, 2007, 16, 1360-1367.	7.6	17
115	An experimental charge density of HEPES. Acta Crystallographica Section B: Structural Science, 2010, 66, 482-492.	1.8	17
116	Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis. Journal of Molecular Biology, 2011, 410, 411-423.	4.2	17
117	Pyrimidine biosynthesis in pathogens – Structures and analysis of dihydroorotases from Yersinia pestis and Vibrio cholerae. International Journal of Biological Macromolecules, 2019, 136, 1176-1187.	7.5	17
118	Crystallization of Fe-Si-B metallic glasses studied by X-ray synchrotron radiation. Journal of Materials Science, 1987, 22, 4144-4152.	3.7	16
119	Cation Binding and Thermostability of FTHFS Monovalent Cation Binding Sites and Thermostability of N10-Formyltetrahydrofolate Synthetase from Moorella thermoacetica,. Biochemistry, 2000, 39, 14481-14486.	2.5	16
120	Structure of <i>Escherichia coli </i> RutC, a member of the YjgF family and putative aminoacrylate peracid reductase of the <i>rut </i> operon. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1294-1299.	0.7	15
121	Structural characterization of <i>Helicobacterâ€fpylori</i> dethiobiotin synthetase reveals differences between family members. FEBS Journal, 2012, 279, 1093-1105.	4.7	15
122	Regioselectivity of hyoscyamine $6\hat{l}^2$ -hydroxylase-catalysed hydroxylation as revealed by high-resolution structural information and QM/MM calculations. Dalton Transactions, 2020, 49, 4454-4469.	3.3	15
123	On the evolution of the quality of macromolecular models in the PDB. FEBS Journal, 2020, 287, 2685-2698.	4.7	15
124	Covidâ€19.bioreproducibility.org: A web resource for <scp>SARSâ€CoV</scp> â€2â€related structural models. Protein Science, 2021, 30, 115-124.	7.6	15
125	Dissecting the Structural Elements for the Activation of \hat{l}^2 -Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae. Journal of Bacteriology, 2016, 198, 463-476.	2.2	14
126	Dexamethasone at 119 K. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2791-o2793.	0.2	13

#	Article	IF	Citations
127	Crystal structure and molecular modeling study of N-carbamoylsarcosine amidase Ta0454 from Thermoplasma acidophilum. Journal of Structural Biology, 2010, 169, 304-311.	2.8	13
128	Factors correlating with significant differences between X-ray structures of myoglobin. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 481-491.	2.5	13
129	Insight into the 3D structure and substrate specificity of previously uncharacterized GNAT superfamily acetyltransferases from pathogenic bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 55-64.	2.3	13
130	Explanation of neutron diffraction phenomena observed in vibrating piezoelectric crystals. Physica Status Solidi A, 1972, 9, 423-433.	1.7	12
131	STUDIES OF FCC HEISENBERG ANTIFERROMAGNETS BY MONTE CARLO SIMULATION ON LARGE SPIN ARRAYS. Journal De Physique Colloque, 1988, 49, C8-1551-C8-1552.	0.2	12
132	Data to knowledge: how to get meaning from your result. IUCrJ, 2015, 2, 45-58.	2.2	12
133	Recombinant production of enzymatically active male contraceptive drug target hTSSK2 - Localization of the TSKS domain phosphorylated by TSSK2. Protein Expression and Purification, 2016, 121, 88-96.	1.3	12
134	Structural, Biochemical, and Evolutionary Characterizations of Glyoxylate/Hydroxypyruvate Reductases Show Their Division into Two Distinct Subfamilies. Biochemistry, 2018, 57, 963-977.	2.5	12
135	A transient post-translational modification of active site cysteine alters binding properties of the parkinsonism protein DJ-1. Biochemical and Biophysical Research Communications, 2018, 504, 328-333.	2.1	12
136	Molecular determinants of vascular transport of dexamethasone in COVID-19 therapy. IUCrJ, 2020, 7, 1048-1058.	2.2	12
137	A phenomenological description of the paramagnet-antiferromagnet transition in Cd1-Mn Te. Journal of Magnetism and Magnetic Materials, 1982, 30, 215-222.	2.3	11
138	Synthesis and Solid-State Study of Supramolecular Hostâ^'Guest Assemblies: Bis[6-O,6-O′-(1,2:3,4-diisopropylidene-α-d-galactopyranosyl)thiophosphoryl] Dichalcogenides. Journal of Organic Chemistry, 2008, 73, 4388-4397.	3.2	11
139	The crystal structure of the AF2331 protein from <i>Archaeoglobus fulgidus</i> DSM 4304 forms an unusual interdigitated dimer with a new type of \hat{l}_{\pm} + \hat{l}_{\pm} fold. Protein Science, 2009, 18, 2410-2419.	7.6	11
140	A Gcn5-RelatedN-Acetyltransferase (GNAT) Capable of Acetylating Polymyxin B and Colistin Antibioticsin Vitro. Biochemistry, 2018, 57, 7011-7020.	2.5	11
141	Energetics of interactions in the solid state of 2-hydroxy-8- $\langle i \rangle X \langle j \rangle$ -quinoline derivatives ($\langle i \rangle X \langle j \rangle$ =) Tj ETQq1 1 2019, 6, 868-883.	0.784314 2.2	rgBT /Overlo
142	Spin waves in Feî—,Alî—,Si system. Solid State Communications, 1983, 46, 217-219.	1.9	10
143	X-Ray Diffraction Experiment. Advances in Protein Chemistry and Structural Biology, 2009, 77, 23-40.	2.3	10
144	Assessing the accuracy of template-based structure prediction metaservers by comparison with structural genomics structures. Journal of Structural and Functional Genomics, 2012, 13, 213-225.	1,2	10

#	Article	IF	CITATIONS
145	Edc3 Function in Yeast and Mammals Is Modulated by Interaction with NAD-Related Compounds. G3: Genes, Genomes, Genetics, 2014, 4, 613-622.	1.8	10
146	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. Acta Crystallographica Section D: Structural Biology, 2019, 75, 455-457.	2.3	10
147	Crystallization and preliminary X-ray analysis of the cytoplasmic domain of human erythrocyte band 3. Proteins: Structure, Function and Bioinformatics, 1995, 22, 293-297.	2.6	9
148	Using surface-bound rubidium ions for protein phasing. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1008-1012.	2.5	9
149	Crystal structure of a transcriptional regulator TM1030 from Thermotoga maritima solved by an unusual MAD experiment. Journal of Structural Biology, 2007, 159, 424-432.	2.8	9
150	Biophysical analysis of the putative acetyltransferase SACOL2570 from methicillin-resistant Staphylococcus aureus. Journal of Structural and Functional Genomics, 2013, 14, 97-108.	1.2	9
151	Ultratight crystal packing of a 10 kDa protein. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 464-470.	2.5	9
152	Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form. Andrology, 2015, 3, 756-771.	3.5	9
153	Molstack: A platform for interactive presentations of electron density and cryoâ€EM maps and their interpretations. Protein Science, 2020, 29, 120-127.	7.6	9
154	Recognizing and validating ligands with CheckMyBlob. Nucleic Acids Research, 2021, 49, W86-W92.	14.5	9
155	Detecting anomalies in X-ray diffraction images using convolutional neural networks. Expert Systems With Applications, 2021, 174, 114740.	7.6	9
156	"Hot―Macromolecular Crystals. Crystal Growth and Design, 2010, 10, 580-586.	3.0	8
157	Gcn5-Related N-Acetyltransferases (GNATs) With a Catalytic Serine Residue Can Play Ping-Pong Too. Frontiers in Molecular Biosciences, 2021, 8, 646046.	3 . 5	8
158	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. IUCrJ, 2019, 6, 341-343.	2.2	8
159	Phason velocities inTaS2by x-ray diffuse scattering. Physical Review B, 1989, 39, 1360-1362.	3.2	7
160	A multiâ€faceted analysis of RutD reveals a novel family of α/β hydrolases. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2359-2368.	2.6	7
161	Crystal structures of putative phosphoglycerate kinases from B. anthracis and C. jejuni. Journal of Structural and Functional Genomics, 2012, 13, 15-26.	1.2	7
162	Structure of the Complex of an Iminopyridinedione Protein Tyrosine Phosphatase 4A3 Phosphatase Inhibitor with Human Serum Albumin. Molecular Pharmacology, 2020, 98, 648-657.	2.3	7

#	Article	IF	Citations
163	Spinning single crystal tof method for structure analysis. Nuclear Instruments & Methods, 1970, 77, 13-20.	1.2	6
164	Neutron Scattering Studies of the "Antiferromagnetic Phase" of Cd1-XMnXTe. Physica Scripta, 1982, 25, 731-734.	2.5	6
165	Stacks of DMANH+– scaffolding for ribbon shaped Clâ^'bridged oxonium ions. CrystEngComm, 2007, 9, 152-157.	2.6	6
166	The structure of pyogenecin immunity protein, a novel bacteriocin-like immunity protein from Streptococcus pyogenes. BMC Structural Biology, 2009, 9, 75.	2.3	6
167	Crystal structure of a putative transcriptional regulator SCO0520 from Streptomyces coelicolor A3(2) reveals an unusual dimer among TetR family proteins. Journal of Structural and Functional Genomics, 2011, 12, 149-157.	1.2	6
168	Databases, Repositories, and Other Data Resources in Structural Biology. Methods in Molecular Biology, 2017, 1607, 643-665.	0.9	6
169	Optimal structure determination from subâ€optimal diffraction data. Protein Science, 2022, 31, 259-268.	7.6	6
170	Group depositions to the Protein Data Bank need adequate presentation and different archiving protocol. Protein Science, 2022, 31, 784-786.	7.6	6
171	Organism-specific differences in the binding of ketoprofen to serum albumin. IUCrJ, 2022, 9, 551-561.	2.2	6
172	High temperature behaviour of spin waves in Fe3-xMnxSi. Solid State Communications, 1986, 57, 47-51.	1.9	5
173	Function-Biased Choice of Additives for Optimization of Protein Crystallization: The Case of the Putative Thioesterase PA5185 from Pseudomonas aeruginosa PAO1. Crystal Growth and Design, 2008, 8, 4054-4061.	3.0	5
174	Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization. Protein Expression and Purification, 2017, 134, 47-62.	1.3	5
175	Generating enzyme and radicalâ€mediated bisubstrates as tools for investigating Gcn5â€related <i>Nâ€</i> acetyltransferases. FEBS Letters, 2017, 591, 2348-2361.	2.8	5
176	A study on the structure, mechanism, and biochemistry of kanamycin B dioxygenase (KanJ)â€"an enzyme with a broad range of substrates. FEBS Journal, 2021, 288, 1366-1386.	4.7	5
177	Rapid response to emerging biomedical challenges and threats. IUCrJ, 2021, 8, 395-407.	2.2	5
178	virusMED: an atlas of hotspots of viral proteins. IUCrJ, 2021, 8, 931-942.	2.2	5
179	State-of-the-Art Data Management: Improving the Reproducibility, Consistency, and Traceability of Structural Biology and in Vitro Biochemical Experiments. Methods in Molecular Biology, 2021, 2199, 209-236.	0.9	5
180	Map2mod-a server for evaluation of crystallographic models and their agreement with electron density maps. Bioinformatics, 2006, 22, 1660-1661.	4.1	4

#	Article	IF	CITATIONS
181	Structure of anabolic ornithine carbamoyltransferase fromCampylobacter jejuniat 2.7â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1018-1024.	0.7	4
182	Spin waves in Fe3â^'xMnxSi ordered alloys. Solid State Communications, 1981, 38, 773-775.	1.9	3
183	L-Methioninium chloride andL-selenomethioninium chloride at 103â€K. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, o868-o871.	0.4	3
184	3-(1-Pyridinio)propanesulfonate and 3-(benzyldimethylammonio)propanesulfonate monohydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o114-o116.	0.4	3
185	Structure of a short-chain dehydrogenase/reductase from <i>Bacillus anthracis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 632-637.	0.7	3
186	Differences in substrate specificity of <i>V. cholerae</i> FabH enzymes suggest new approaches for the development of novel antibiotics and biofuels. FEBS Journal, 2018, 285, 2900-2921.	4.7	3
187	Structural and biochemical analysis of <i>BacillusÂanthracis</i> prephenate dehydrogenase reveals an unusual mode of inhibition by tyrosine via the ACT domain. FEBS Journal, 2020, 287, 2235-2255.	4.7	3
188	Comparison of metalâ€bound and unbound structures of aminopeptidase B proteins from <scp><i>Escherichia coli</i></scp> and <scp><i>Yersinia pestis</i></scp> . Protein Science, 2020, 29, 1618-1628.	7.6	3
189	Synchrotron radiation as a tool for macromolecular X-Ray Crystallography: A XXI century perspective. Nuclear Instruments & Methods in Physics Research B, 2021, 489, 30-40.	1.4	3
190	2,3-Difluorobenzoic acid. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o466-o466.	0.2	3
191	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 321-323.	0.8	3
192	New ligand-binding sites identified in the crystal structures of \hat{l}^2 -lactoglobulin complexes with desipramine. IUCrJ, 2022, 9, 386-398.	2.2	3
193	Crystallization and preliminary Xâ€ray investigation of lipoxygenaseâ€3 from soybeans. Protein Science, 1995, 4, 1233-1235.	7.6	2
194	3-(Morpholinium-1-yl)propanesulfonate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3190-o3191.	0.2	2
195	3-(Ethyldimethylammonio)propanesulfonate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5757-o5759.	0.2	2
196	Is too`creative' language acceptable in crystallography?. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1041-1042.	2.5	2
197	Structure of isochorismate synthase DhbC fromBacillus anthracis. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 956-961.	0.7	2
198	Sharing Big Data. IUCrJ, 2017, 4, 3-4.	2,2	2

#	Article	IF	CITATIONS
199	The young person's guide to the PDB. Postepy Biochemii, 2016, 62, 242-249.	0.2	2
200	Crystallization at low salt concentration and alkaline pH and preliminary crystallographic data for a monoclinic form of yeast enolase. Acta Crystallographica Section D: Biological Crystallography, 1994, 50, 335-336.	2.5	1
201	3-(1-Methylpiperidinio)-1-propanesulfonate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o282-o283.	0.2	1
202	N,N,N′,N′-Tetrakis(carboxymethyl)-2,2′-(ethylenedioxy)dianilinium dichloride dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o754-o756.	0.2	1
203	Structural and immunologic characterization of Ara h 1, a major peanut allergen Journal of Biological Chemistry, 2011 , 286 , 44294 .	3.4	1
204	Structural Analysis Reveals Molecular Basis for Interactions of Group 1 Allergens with Species Specific and Cross-Reactive Antibodies. Journal of Allergy and Clinical Immunology, 2013, 131, AB15.	2.9	1
205	Structural characterization of the putative ABC-type 2 transporter from Thermotoga maritima MSB8. Journal of Structural and Functional Genomics, 2014, 15, 215-222.	1.2	1
206	Antigenic Determinants On Der p 1 Identified By Mutagenesis Analysis Based On The Structure Of Allergen-Antibody Complexes. Journal of Allergy and Clinical Immunology, 2014, 133, AB164.	2.9	1
207	2,4-Dichlorobenzaldehyde. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o243-o243.	0.2	1
208	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. Journal of Applied Crystallography, 2019, 52, 495-497.	4.5	1
209	Structural and Functional Characterization of the NHR2 and Runt Domains of AML1/ETO Blood, 2004, 104, 482-482.	1.4	1
210	A public database of macromolecular diffraction experiments. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C627-C627.	0.1	1
211	A simple method of orientating single crystals on time-of-flight neutron spectrometers. Nuclear Instruments & Methods, 1974, 119, 141-144.	1.2	0
212	Secondary extinction in rotating single-crystal slabs. The Acta Crystallographica Section A, Crystal Physics, Diffractionoretical and General Crystallography, 1979, 35, 861-870.	0.6	0
213	Antiferromagnetic states in CopMg1â°°pO (abstract). Journal of Applied Physics, 1990, 67, 5990-5990.	2.5	0
214	Crystal structure of 6-(4-difluoromethoxy-3-methoxyphenyl)-3(2H)- pyridazinone, C12H10F2N2O3. Zeitschrift Fur Kristallographie - New Crystal Structures, 2006, 221, 359-360.	0.3	0
215	Crystal structure of 2,6-dichlorobenzaldehyde, C7H4Cl2O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2006, 221, 545-546.	0.3	0
216	Disodium 4-nitrophenylphosphate hexahydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m884-m886.	0.2	0

#	Article	IF	Citations
217	2-(Biphenyl-4-yl)-2,3-dihydroquinazolin-4(1H)-one. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, 0891-0893.	0.2	O
218	3-lodo-L-tyrosine hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1557-o1559.	0.2	0
219	2-Amino-4-(4-chloro-3-methylphenyl)-5-propyl-1,3-thiazolium iodide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1598-o1600.	0.2	0
220	trans-1-Hydroxycyclopentan-2-aminium chloride. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2697-o2698.	0.2	0
221	Absolute configuration from a redetermination of (+)-5-bromo-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidine-2,4-dione at 118â€(2) K. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4159-o4160.	0.2	0
222	How to use the PSI Structural Genomics Knowledgebase to Enable Research. Biophysical Journal, 2010, 98, 250a.	0.5	0
223	The Structural Biology Knowledgebase - search Online for Protein Sequences, Structures, Functions, Methods and More. Biophysical Journal, 2011, 100, 319a.	0.5	0
224	Structure and Function of the Peanut Panallergen Ara h 8. Journal of Allergy and Clinical Immunology, 2013, 131, AB19.	2.9	0
225	De Novo Creation of an Antibody Binding Epitope On Group 1 Mite Allergens. Journal of Allergy and Clinical Immunology, 2013, 131, AB16.	2.9	0
226	The crystal structure of pyrimidine/thiamin biosynthesis precursor-like domain-containing protein CAE31940 from proteobacterium Bordetella bronchiseptica RB50, and evolutionary insight into the NMT1/THI5 family. Journal of Structural and Functional Genomics, 2014, 15, 73-81.	1.2	0
227	Check your metal - not every density blob is a water molecule. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1483-C1483.	0.1	0
228	Transforming biomedical and structural data into information and knowledge. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C492-C492.	0.1	0
229	Structural Basis of Non-Steroidal Anti-Inflammatory Drug (NSAID) Transport by Serum Albumin. Biophysical Journal, 2020, 118, 323a-324a.	0.5	0
230	Dr. Alexander Wlodawerâ€"celebrating five decades of service to the structural biology community. FEBS Journal, 2021, 288, 4160-4164.	4.7	0
231	The Integrated Resource for Reproducibility in Molecular Crystallography: experiences of the first five years. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, a187-a187.	0.1	0
232	Rapid response to biomedical challenges and threats. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, a268-a268.	0.1	0
233	The Protein Structure Initiative Structural Genomics Knowledgebase. FASEB Journal, 2009, 23, 858.10.	0.5	0
234	HOW TO USE THE PSI STRUCTURAL GENOMICS KNOWLEDGEBASE TO ENABLE RESEARCH. FASEB Journal, 2010, 24, 902.2.	0.5	0

#	Article	IF	CITATIONS
235	Structural Biology Knowledgebase: a biologists resource for protein structure and sample information. FASEB Journal, 2012, 26, lb194.	0.5	O
236	Abstract 2747: EWS-FLI1 reduces RNA Helicase A activity , 2013, , .		0
237	Structural analysis of GNAT acetyltransferases and protein acetylation. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C299-C299.	0.1	O
238	Structural Biology Knowledgebase: An Integrated Resource for Modern Biologists. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C493-C493.	0.1	O
239	The Integrated Resource for Reproducibility in Macromolecular Crystallography (IRRMC). Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a218-a218.	0.1	O
240	What's hiding in the PDB? Reinvestigation of structural data for the biomedically important enzymes metallo- \hat{l}^2 -lactamases. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a281-a281.	0.1	O
241	Crystallographic tools towards understanding of macromolecular structure–function relationships. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C35-C35.	0.1	O
242	Credible measures of resolution limits. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a326-a326.	0.1	O
243	The Integrated Resource for Reproducibility in Macromolecular Crystallography (IRRMC). Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a259-a259.	0.1	O
244	ACT domain of Bacillus anthracis prephenate dehydrogenase acts as tyrosine sensor and inhibits the enzyme via a mechanical switch. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a341-a341.	0.1	0
245	Decomposition methods for analysis of specific radiation damage. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a330-a330.	0.1	O
246	Comparison of X-ray wavefunction refinement and multipole refinement based on the energetic analysis of the crystal structures of 2-hydroxo-8-X-quinoline derivatives ($X = Cl$, Br, I, S-Ph). Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e454-e454.	0.1	0