
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/993377/publications.pdf Version: 2024-02-01

YAN-HONG CHAO

#	Article	IF	CITATIONS
1	Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine. Green Energy and Environment, 2023, 8, 1081-1090.	4.7	18
2	Engineering 3D-printed aqueous colloidal ceramic slurry for direct ink writing. Green Chemical Engineering, 2023, 4, 73-80.	3.3	8
3	Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine. Chinese Journal of Chemical Engineering, 2023, 54, 316-322.	1.7	11
4	Sustainable preparation of graphene-analogue boron nitride by ball-milling for adsorption of organic pollutants. Chinese Journal of Chemical Engineering, 2022, 42, 73-81.	1.7	3
5	Enhanced adsorption performance for antibiotics by alcohol-solvent mediated boron nitride nanosheets. Rare Metals, 2022, 41, 342-352.	3.6	24
6	N-hydroxyphthalimide anchored on hexagonal boron nitride as a metal-free heterogeneous catalyst for deep oxidative desulfurization. Petroleum Science, 2022, 19, 1382-1389.	2.4	6
7	Engineering Dual Oxygen Simultaneously Modified Boron Nitride for Boosting Adsorptive Desulfurization of Fuel. Engineering, 2022, 14, 86-93.	3.2	11
8	Three-dimensional Ce-MOFs-derived Ce@C-BN nanobundles for adsorptive desulfurization. Applied Surface Science, 2022, 590, 152926.	3.1	19
9	Heteroatom Bridging Strategy in Carbon-Based Catalysts for Enhanced Oxidative Desulfurization Performance. Inorganic Chemistry, 2022, 61, 633-642.	1.9	8
10	Catalytic oxidation of pentanethiol on basic nitrogen doped carbon hollow spheres derived from waste tires. Petroleum Science, 2022, 19, 1888-1896.	2.4	1
11	Synergistic Effect of Au–Cu Alloy Nanoparticles on TiO ₂ for Efficient Aerobic Catalytic Oxidative Desulfurization. Industrial & Engineering Chemistry Research, 2022, 61, 6292-6300.	1.8	12
12	Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene. Desalination, 2022, 537, 115847.	4.0	32
13	Tailoring hydrophobic deep eutectic solvent for selective lithium recovery from the mother liquor of Li2CO3. Chemical Engineering Journal, 2021, 420, 127648.	6.6	63
14	Hierarchical porous boron nitride with boron vacancies for improved adsorption performance to antibiotics. Journal of Colloid and Interface Science, 2021, 584, 154-163.	5.0	60
15	Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chemistry, 2021, 23, 2177-2184.	4.6	91
16	Highâ€performance adsorptive desulfurization by ternary hybrid boron carbon nitride aerogel. AICHE Journal, 2021, 67, e17280.	1.8	58
17	Binary molten salts mediated defect engineering on hexagonal boron nitride catalyst with long-term stability for aerobic oxidative desulfurization. Applied Surface Science, 2021, 558, 149724.	3.1	13
18	Controllable electronic effect via deep eutectic solvents modification for boosted aerobic oxidative desulfurization. Molecular Catalysis, 2021, 512, 111757.	1.0	3

#	Article	IF	CITATIONS
19	Sustainable and Convenient Recovery of Valuable Metals from Spent Li-Ion Batteries by a One-Pot Extraction Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 13851-13861.	3.2	49
20	Phosphomolybdic acid encapsulated in ZIF-8-based porous ionic liquids for reactive extraction desulfurization of fuels. Inorganic Chemistry Frontiers, 2021, 9, 165-178.	3.0	24
21	3D-printing of integrated spheres as a superior support of phosphotungstic acid for deep oxidative desulfurization of fuel. Journal of Energy Chemistry, 2020, 45, 91-97.	7.1	50
22	Macroscopic 3D boron nitride monolith for efficient adsorptive desulfurization. Fuel, 2020, 261, 116448.	3.4	34
23	Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chemical Engineering Journal, 2020, 392, 123731.	6.6	88
24	The interaction nature between hollow silica-based porous ionic liquids and CO2: A DFT study. Journal of Molecular Graphics and Modelling, 2020, 100, 107694.	1.3	21
25	Amorphous TiO ₂ â€Derived Largeâ€Capacity Lithium Ion Sieve for Lithium Recovery. Chemical Engineering and Technology, 2020, 43, 1784-1791.	0.9	38
26	Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils. Green Energy and Environment, 2020, 5, 166-172.	4.7	83
27	Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of Rhodamine B and Rhodamine 6G from food samples. Food Chemistry, 2020, 320, 126666.	4.2	40
28	Synthesis of boron nitride nanosheets with N-defects for efficient tetracycline antibiotics adsorptive removal. Chemical Engineering Journal, 2020, 387, 124138.	6.6	75
29	Unraveling the mechanism of CO ₂ capture and separation by porous liquids. RSC Advances, 2020, 10, 42706-42717.	1.7	22
30	Metalâ€based ionic liquid assisted synthesis of highly dispersed mesoporous Fe(III)/SiO ₂ for enhanced adsorption of antibiotics. Journal of Chemical Technology and Biotechnology, 2019, 94, 3815-3824.	1.6	14
31	Design of Lewis Acid Centers in Bundlelike Boron Nitride for Boosting Adsorptive Desulfurization Performance. Industrial & Engineering Chemistry Research, 2019, 58, 13303-13312.	1.8	47
32	Gas-assisted exfoliation of boron nitride nanosheets enhancing adsorption performance. Ceramics International, 2019, 45, 18838-18843.	2.3	35
33	Synthesis of porous carbon <i>via</i> a waste tire leavening strategy for adsorptive desulfurization. RSC Advances, 2019, 9, 30575-30580.	1.7	8
34	Silver Nanoparticle-Decorated Boron Nitride with Tunable Electronic Properties for Enhancement of Adsorption Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 4948-4957.	3.2	71
35	Advanced Overlap Adsorption Model of Few-Layer Boron Nitride for Aromatic Organic Pollutants. Industrial & Engineering Chemistry Research, 2018, 57, 4045-4051.	1.8	26
36	Silicotungstic acid immobilized on lamellar hexagonal boron nitride for oxidative desulfurization of fuel components. Fuel, 2018, 213, 12-21.	3.4	55

#	Article	IF	CITATIONS
37	Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance. Nanotechnology, 2018, 29, 025604.	1.3	23
38	Decavanadates anchored into micropores of graphene-like boron nitride: Efficient heterogeneous catalysts for aerobic oxidative desulfurization. Fuel, 2018, 230, 104-112.	3.4	97
39	Taming electronic properties of boron nitride nanosheets as metal-free catalysts for aerobic oxidative desulfurization of fuels. Green Chemistry, 2018, 20, 4453-4460.	4.6	128
40	Activated boron nitride ultrathin nanosheets for enhanced adsorption desulfurization performance. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 245-252.	2.7	18
41	Metalâ€free boron nitride adsorbent for ultraâ€deep desulfurization. AICHE Journal, 2017, 63, 3463-3469.	1.8	51
42	Graphene-like boron nitride anchored Brönsted acid ionic liquids as metal-free catalyst for advanced oxidation process. Molecular Catalysis, 2017, 436, 53-59.	1.0	27
43	Grapheneâ€analogue molybdenum disulfide for adsorptive removal of tetracycline from aqueous solution: equilibrium, kinetic, and thermodynamic studies. Environmental Progress and Sustainable Energy, 2017, 36, 815-821.	1.3	27
44	Tailoring Nâ€Terminated Defective Edges of Porous Boron Nitride for Enhanced Aerobic Catalysis. Small, 2017, 13, 1701857.	5.2	60
45	Green aqueous biphasic systems containing deep eutectic solvents and sodium salts for the extraction of protein. RSC Advances, 2017, 7, 49361-49367.	1.7	53
46	Tuning electronic properties of boron nitride nanoplate via doping carbon for enhanced adsorptive performance. Journal of Colloid and Interface Science, 2017, 508, 121-128.	5.0	37
47	Phosphomolybdic acid immobilized on ionic liquid-modified hexagonal boron nitride for oxidative desulfurization of fuel. RSC Advances, 2017, 7, 54266-54276.	1.7	26
48	Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. Journal of Molecular Catalysis A, 2016, 423, 207-215.	4.8	51
49	Controlled Gas Exfoliation of Boron Nitride into Few‣ayered Nanosheets. Angewandte Chemie - International Edition, 2016, 55, 10766-10770.	7.2	271
50	Controlled Gas Exfoliation of Boron Nitride into Few‣ayered Nanosheets. Angewandte Chemie, 2016, 128, 10924-10928.	1.6	44
51	Boron Nitride Mesoporous Nanowires with Doped Oxygen Atoms for the Remarkable Adsorption Desulfurization Performance from Fuels. ACS Sustainable Chemistry and Engineering, 2016, 4, 4457-4464.	3.2	95
52	Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization. Chemical Engineering Journal, 2016, 301, 123-131.	6.6	115
53	Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte. Small, 2016, 12, 3535-3542.	5.2	62
54	Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid. RSC Advances, 2016, 6, 140-147.	1.7	22

#	Article	IF	CITATIONS
55	A large number of low coordinated atoms in boron nitride for outstanding adsorptive desulfurization performance. Green Chemistry, 2016, 18, 3040-3047.	4.6	79
56	A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chemical Communications, 2016, 52, 144-147.	2.2	206
57	Controllable Fabrication of Tungsten Oxide Nanoparticles Confined in Grapheneâ€Analogous Boron Nitride as an Efficient Desulfurization Catalyst. Chemistry - A European Journal, 2015, 21, 15421-15427.	1.7	63
58	Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels. Journal of Materials Chemistry A, 2015, 3, 12738-12747.	5.2	126
59	Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chemistry, 2015, 17, 1647-1656.	4.6	167
60	Preparation of metal ions impregnated polystyrene resins for adsorption of antibiotics contaminants in aquatic environment. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
61	Partitioning behavior of tetracycline in hydrophobic ionic liquids two-phase systems. Separation Science and Technology, 2015, , 150527095459001.	1.3	3
62	Graphene-Analogue Hexagonal BN Supported with Tungsten-based Ionic Liquid for Oxidative Desulfurization of Fuels. ACS Sustainable Chemistry and Engineering, 2015, 3, 186-194.	3.2	167
63	Phosphotungstic Acid Immobilized on Ionic Liquid-Modified SBA-15: Efficient Hydrophobic Heterogeneous Catalyst for Oxidative Desulfurization in Fuel. Industrial & Engineering Chemistry Research, 2014, 53, 19895-19904.	1.8	118
64	Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chemical Engineering Journal, 2014, 243, 60-67.	6.6	207
65	Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid. Korean Journal of Chemical Engineering, 2014, 31, 211-217.	1.2	62
66	Mechanism and optimization for oxidative desulfurization of fuels catalyzed by Fenton-like catalysts in hydrophobic ionic liquid. Journal of Molecular Catalysis A, 2014, 382, 8-14.	4.8	62
67	Ionic liquid extraction and catalytic oxidative desulfurization of fuels using dialkylpiperidinium tetrachloroferrates catalysts. Chemical Engineering Journal, 2014, 250, 48-54.	6.6	116
68	Commercial Diatomite for Adsorption of Tetracycline Antibiotic from Aqueous Solution. Separation Science and Technology, 2014, 49, 2221-2227.	1.3	30
69	Development of novel graphene-like layered hexagonal boron nitride for adsorptive removal of antibiotic gatifloxacin from aqueous solution. Green Chemistry Letters and Reviews, 2014, 7, 330-336.	2.1	35
70	Oxidation of Aromatic Sulfur Compounds Catalyzed by Organic Hexacyanoferrates in Ionic Liquids with a Low Concentration of H ₂ O ₂ as an Oxidant. Energy & Fuels, 2014, 28, 2754-2760.	2.5	43
71	Controllable synthesis of functionalized ordered mesoporous silica by metal-based ionic liquids, and their effective adsorption of dibenzothiophene. RSC Advances, 2014, 4, 40588-40594.	1.7	15
72	Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization. Ceramics International, 2014, 40, 11627-11635.	2.3	142

#	Article	IF	CITATIONS
73	Macroporous polystyrene resins as adsorbents for the removal of tetracycline antibiotics from an aquatic environment. Journal of Applied Polymer Science, 2014, 131, .	1.3	44
74	A Novel Reaction-Controlled Foam-Type Polyoxometalate Catalyst for Deep Oxidative Desulfurization of Fuels. Industrial & Engineering Chemistry Research, 2013, 52, 17399-17406.	1.8	54
75	Catalytic kinetics of oxidative desulfurization with surfactant-type polyoxometalate-based ionic liquids. Fuel Processing Technology, 2013, 106, 70-76.	3.7	106
76	Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels. Chemical Engineering Journal, 2013, 229, 250-256.	6.6	174
77	Application of a self-emulsifiable task-specific ionic liquid in oxidative desulfurization of fuels. RSC Advances, 2013, 3, 3893.	1.7	27
78	Partitioning Behavior of Papain in Ionic Liquids-Based Aqueous Two-Phase Systems. Journal of Chemistry, 2013, 2013, 1-6.	0.9	10
79	Fenton-like ionic liquids/H ₂ O ₂ system: one-pot extraction combined with oxidation desulfurization of fuel. RSC Advances, 2012, 2, 658-664.	1.7	81
80	Oxidative desulfurization of fuel catalyzed by metal-based surfactant-type ionic liquids. Journal of Molecular Catalysis A, 2011, 347, 8-14.	4.8	92