
Frederick E Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/99332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subsidence risk from thawing permafrost. Nature, 2001, 410, 889-890.	13.7	351
2	Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications, 2018, 9, 5147.	5.8	327
3	The transient layer: implications for geocryology and climate-change science. Permafrost and Periglacial Processes, 2005, 16, 5-17.	1.5	290
4	Spatial Extent, Age, and Carbon Stocks in Drained Thaw Lake Basins on the Barrow Peninsula, Alaska. Arctic, Antarctic, and Alpine Research, 2003, 35, 291-300.	0.4	223
5	Global warming and active-layer thickness: results from transient general circulation models. Global and Planetary Change, 1997, 15, 61-77.	1.6	177
6	The urban heat island in winter at Barrow, Alaska. International Journal of Climatology, 2003, 23, 1889-1905.	1.5	141
7	Decadal variations of activeâ€layer thickness in moistureâ€controlled landscapes, Barrow, Alaska. Journal of Geophysical Research, 2010, 115, .	3.3	138
8	GEOCRYOLOGY: Enhanced: (Un)frozen in Time. Science, 2003, 299, 1673-1675.	6.0	125
9	The N-factor in Natural Landscapes: Variability of Air and Soil-Surface Temperatures, Kuparuk River Basin, Alaska, U.S.A Arctic, Antarctic, and Alpine Research, 2001, 33, 140-148.	0.4	104
10	Title is missing!. Climatic Change, 1997, 35, 241-258.	1.7	100
11	Permafrost, Infrastructure, and Climate Change: A GIS-Based Landscape Approach to Geotechnical Modeling. Arctic, Antarctic, and Alpine Research, 2012, 44, 368-380.	0.4	88
12	lsotropic thaw subsidence in undisturbed permafrost landscapes. Geophysical Research Letters, 2013, 40, 6356-6361.	1.5	75
13	Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environmental Research Letters, 2015, 10, 125005.	2.2	69
14	The N-Factor in Natural Landscapes: Variability of Air and Soil-Surface Temperatures, Kuparuk River Basin, Alaska, U.S.A Arctic, Antarctic, and Alpine Research, 2001, 33, 140.	0.4	64
15	Permafrost zonation in Russia under anthropogenic climatic change. Permafrost and Periglacial Processes, 1993, 4, 137-148.	1.5	57
16	Application of differential global positioning systems to monitor frost heave and thaw settlement in tundra environments. Permafrost and Periglacial Processes, 2003, 14, 349-357.	1.5	57
17	Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962–2015. Permafrost and Periglacial Processes, 2017, 28, 566-572.	1.5	56
18	Application of groundâ€penetrating radar imagery for threeâ€dimensional visualisation of nearâ€surface structures in iceâ€rich permafrost, Barrow, Alaska. Permafrost and Periglacial Processes, 2007, 18, 309-321.	1.5	51

FREDERICK E NELSON

#	Article	IF	CITATIONS
19	Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Scientific Data, 2019, 6, 190037.	2.4	51
20	Anthropogenic heat island at Barrow, Alaska, during winter: 2001–2005. Journal of Geophysical Research, 2007, 112, .	3.3	44
21	Uncertainties in gridded air temperature fields and effects on predictive active layer modeling. Journal of Geophysical Research, 2007, 112, .	3.3	43
22	Permafrost Distribution in Central Canada: Applications of a Climate-Based Predictive Model. Annals of the American Association of Geographers, 1986, 76, 550-569.	3.0	42
23	Comparison of model-produced active layer fields: Results for northern Alaska. Journal of Geophysical Research, 2007, 112, .	3.3	41
24	The Circumpolar Active Layer Monitoring (CALM) Workshop and THE CALM II Program. Polar Geography, 2004, 28, 253-266.	0.8	36
25	Spatial variability of permafrost active-layer thickness under contemporary and projected climate in Northern Alaska. Polar Geography, 2012, 35, 95-116.	0.8	33
26	Periglacial Appalachia: palaeoclimatic significance of blockfield elevation gradients, eastern USA. Permafrost and Periglacial Processes, 2007, 18, 61-73.	1.5	22
27	Traditional Iñupiat Ice Cellars (SIÄá,·UAQ) in Barrow, Alaska: Characteristics, Temperature Monitoring, and Distribution. Geographical Review, 2017, 107, 143-158.	0.9	21
28	Cryoplanation Terraces: Periglacial Cirque Analogs. Geografiska Annaler, Series A: Physical Geography, 1989, 71, 31-41.	0.6	18
29	The Circumpolar-Active-Layer-Monitoring(CALM) Workshop: introduction. Permafrost and Periglacial Processes, 2004, 15, 99-101.	1.5	18
30	Spatial Sampling Design in the Circumpolar Active Layer Monitoring Programme. Permafrost and Periglacial Processes, 2017, 28, 42-51.	1.5	17
31	Sampling-surface orientation and clast macrofabric in periglacial colluvium. Earth Surface Processes and Landforms, 2001, 26, 523-529.	1.2	16
32	Introduction to special section: Permafrost and Seasonally Frozen Ground Under a Changing Climate. Journal of Geophysical Research, 2007, 112, .	3.3	16
33	PERMAFROST ZONATION IN EASTERN CANADA: A REVIEW OF PUBLISHED MAPS. Physical Geography, 1989, 10, 233-248.	0.6	15
34	Timeâ€transgressive cryoplanation terrace development through nivationâ€driven scarp retreat. Earth Surface Processes and Landforms, 2020, 45, 526-534.	1.2	13
35	Clast fabric in relict periglacial colluvium, salamanca reâ€entrant, southwestern new york, usa. Geografiska Annaler, Series A: Physical Geography, 2001, 83, 145-156.	0.6	12
36	Cosmogenic ¹⁰ Be and ³⁶ Cl geochronology of cryoplanation terraces in the Alaskan Yukon-Tanana Upland. Quaternary Research, 2020, 97, 157-166.	1.0	12

FREDERICK E NELSON

#	Article	IF	CITATIONS
37	Long-term Circumpolar Active Layer Monitoring (CALM) program observations in Northern Alaskan tundra. Polar Geography, 2021, 44, 167-185.	0.8	12
38	Cryoplanation Terraces: Periglacial Cirque Analogs. Geografiska Annaler, Series A: Physical Geography, 1989, 71, 31.	0.6	11
39	Periglacial cirque analogs: Elevation trends of cryoplanation terraces in eastern Beringia. Geomorphology, 2017, 293, 305-317.	1.1	11
40	Cryoplanation terrace orientation in alaska. Geografiska Annaler, Series A: Physical Geography, 1998, 80, 135-151.	0.6	10
41	Characterising relict cryogenic macrostructures in mid″atitude areas of the USA with threeâ€dimensional groundâ€penetrating radar. Permafrost and Periglacial Processes, 2009, 20, 257-268.	1.5	10
42	Urban–rural contrasts in summer soil-surface temperature and active-layer thickness, Barrow, Alaska, USA. Polar Geography, 2013, 36, 183-201.	0.8	10
43	Cryoplanation Terrace Orientation in Alaska. Geografiska Annaler, Series A: Physical Geography, 1998, 80A, 135-151.	0.6	10
44	Cryogenic sediment-filled wedges, northern Delaware, USA. Permafrost and Periglacial Processes, 2004, 15, 319-326.	1.5	9
45	The Summer Climate of an Arctic Coastal Village: Preliminary Observations from the Barrow Urban Heat-island Study. Polar Geography, 2004, 28, 197-221.	0.8	8
46	A characteristic periglacial landform: Automated recognition and delineation of cryoplanation terraces in eastern Beringia. Permafrost and Periglacial Processes, 2021, 32, 35-46.	1.5	7
47	FROST MOUNDS AT TOOLIK LAKE, ALASKA. Physical Geography, 1987, 8, 148-159.	0.6	6
48	SPECTRAL SIGNATURE OF COUPLED FLOW IN THE REFREEZING ACTIVE LAYER, NORTHERN ALASKA. Physical Geography, 1992, 13, 273-284.	0.6	6
49	Urban Geocryology: Mapping Urban–Rural Contrasts in Active-Layer Thickness, Barrow Peninsula, Northern Alaska. Annals of the American Association of Geographers, 2019, 109, 1394-1414.	1.5	6
50	Cool, CALM, collected: the Circumpolar Active Layer Monitoring program and network. Polar Geography, 2021, 44, 155-166.	0.8	6
51	Bibliographic Instruction in the Undergraduate Research Methods Course. Journal of Geography, 1991, 90, 134-140.	1.8	5
52	Permafrost science and secondary education: direct involvement of teachers and students in field research. Geomorphology, 2002, 47, 275-287.	1.1	5
53	Long-term nivation rates, Cathedral Massif, northwestern British Columbia. Canadian Journal of Earth Sciences, 2020, 57, 1305-1311.	0.6	5
54	Preliminary observations of nivation processes, Cathedral Massif, Northwestern British Columbia, Canada. Physical Geography, 2021, 42, 513-528.	0.6	5

FREDERICK E NELSON

#	Article	IF	CITATIONS
55	"America's Glory Road―… On Ice: Permafrost and the Development of the Alcan Highway, 1942–19 2011, , 643-661.	43.,	5
56	Permafrost Regions In Transition: Introduction. Geography, Environment, Sustainability, 2021, 14, 6-8.	0.6	5
57	Rock glaciers of the Beartooth and northern Absaroka ranges, Montana, USA. Permafrost and Periglacial Processes, 2019, 30, 249-259.	1.5	4
58	The morphology of altiplanation in interior Alaska. Polar Geography, 2022, 45, 1-36.	0.8	4
59	METHODOLOGY: A DEVICE FOR MONITORING SOIL MOVEMENT IN PEATLANDS. Physical Geography, 1986, 7, 275-281.	0.6	3
60	A New Report on Permafrost Research Needs. Journal of Cold Regions Engineering - ASCE, 2004, 18, 123-133.	0.5	3
61	Characteristic periglacial topography: Multiâ€scale hypsometric analysis of cryoplanated uplands in eastern Beringia. Permafrost and Periglacial Processes, 2022, 33, 241-263.	1.5	3
62	Why Permafrost Is Thawing, Not Melting. Eos, 2010, 91, 87-87.	0.1	2
63	Stephen Taber and the development of North American cryostratigraphy and periglacial geomorphology. Permafrost and Periglacial Processes, 2021, 32, 213-230.	1.5	2
64	REFERENTIAL TREATMENT. Professional Geographer, 1989, 41, 78-81.	1.0	1
65	Tacky answer to curious animals. Nature, 1990, 344, 115-116.	13.7	1
66	COMPUTERIZED PERSONAL BIBLIOGRAPHY MANAGEMENT. Professional Geographer, 1991, 43, 205-211.	1.0	1
67	Richard K. Haugen. Arctic, Antarctic, and Alpine Research, 2007, 39, 512-513.	0.4	1