
Carmen Berasain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/993159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic analysis ofSalmonella enteritidisbiofilm formation: critical role of cellulose. Molecular Microbiology, 2002, 43, 793-808.	2.5	462
2	SarA and not σB is essential for biofilm development by Staphylococcus aureus. Molecular Microbiology, 2003, 48, 1075-1087.	2.5	400
3	New therapies for hepatocellular carcinoma. Oncogene, 2006, 25, 3866-3884.	5.9	362
4	Inflammation and Liver Cancer. Annals of the New York Academy of Sciences, 2009, 1155, 206-221.	3.8	329
5	Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. Journal of Hepatology, 2000, 33, 907-914.	3.7	315
6	Amphiregulin. Seminars in Cell and Developmental Biology, 2014, 28, 31-41.	5.0	213
7	Amphiregulin: An early trigger of liver regeneration in mice. Gastroenterology, 2005, 128, 424-432.	1.3	173
8	Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut, 2013, 62, 899-910.	12.1	163
9	Low Surface Expression of B7-1 (CD80) Is an Immunoescape Mechanism of Colon Carcinoma. Cancer Research, 2006, 66, 2442-2450.	0.9	129
10	The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. Journal of Gastroenterology, 2014, 49, 9-23.	5.1	129
11	Amphiregulin Contributes to the Transformed Phenotype of Human Hepatocellular Carcinoma Cells. Cancer Research, 2006, 66, 6129-6138.	0.9	125
12	The epidermal growth factor receptor ligand amphiregulin participates in the development of mouse liver fibrosis. Hepatology, 2008, 48, 1251-1261.	7.3	124
13	Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nature Communications, 2019, 10, 3126.	12.8	124
14	Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut, 2017, 66, 1818-1828.	12.1	118
15	Novel Role for Amphiregulin in Protection from Liver Injury. Journal of Biological Chemistry, 2005, 280, 19012-19020.	3.4	115
16	Pathological and virological findings in patients with persistent hypertransaminasaemia of unknown aetiology. Gut, 2000, 47, 429-435.	12.1	112
17	Connective tissue growth factor autocriny in human hepatocellular carcinoma: Oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation. Hepatology, 2011, 54, 2149-2158.	7.3	108
18	The Epidermal Growth Factor Receptor: A Link Between Inflammation and Liver Cancer. Experimental Biology and Medicine, 2009, 234, 713-725.	2.4	107

#	Article	IF	CITATIONS
19	Sâ€Adenosylmethionine regulatesMAT1AandMAT2Agene expression in cultured rat hepatocytes: a new role for Sâ€adenosylmethionine in the maintenance of the differentiated status of the liver. FASEB Journal, 2000, 14, 2511-2518.	0.5	102
20	Hyperhomocysteinemia in Liver Cirrhosis. Hypertension, 2001, 38, 1217-1221.	2.7	97
21	5′-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. Hepatology, 2004, 39, 1088-1098.	7.3	91
22	Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. Journal of Hepatology, 2006, 44, 537-543.	3.7	88
23	Hepatocellular carcinoma and sorafenib: too many resistance mechanisms?. Gut, 2013, 62, 1674-1675.	12.1	82
24	Dual Targeting of Histone Methyltransferase G9a and DNAâ€Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology, 2019, 69, 587-603.	7.3	81
25	Amphiregulin: A new growth factor in hepatocarcinogenesis. Cancer Letters, 2007, 254, 30-41.	7.2	80
26	lleal <scp>FGF</scp> 15 contributes to fibrosisâ€associated hepatocellular carcinoma development. International Journal of Cancer, 2015, 136, 2469-2475.	5.1	79
27	Methylthioadenosine reverses brain autoimmune disease. Annals of Neurology, 2006, 60, 323-334.	5.3	65
28	Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer. Cancers, 2011, 3, 2444-2461.	3.7	65
29	Amphiregulin Induces the Alternative Splicing of p73 Into Its Oncogenic Isoform ΔEx2p73 in Human Hepatocellular Tumors. Gastroenterology, 2009, 137, 1805-1815.e4.	1.3	64
30	Cardiotrophin-1 defends the liver against ischemia-reperfusion injury and mediates the protective effect of ischemic preconditioning. Journal of Experimental Medicine, 2006, 203, 2809-2815.	8.5	62
31	Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/Câ€X chemokine receptor 4 axis. Hepatology, 2015, 62, 166-178.	7.3	61
32	New molecular targets for hepatocellular carcinoma: the ErbB1 signaling system. Liver International, 2007, 27, 174-185.	3.9	59
33	Expression of Wilms' tumor suppressor in the liver with cirrhosis: Relation to hepatocyte nuclear factor 4 and hepatocellular function. Hepatology, 2003, 38, 148-157.	7.3	56
34	Radioembolization of hepatocellular carcinoma activates liver regeneration, induces inflammation and endothelial stress and activates coagulation. Liver International, 2015, 35, 1590-1596.	3.9	55
35	Splicing regulator SLU7 is essential for maintaining liver homeostasis. Journal of Clinical Investigation, 2014, 124, 2909-2920.	8.2	55
36	Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins. Nucleic Acids Research, 2019, 47, 3450-3466.	14.5	53

#	Article	IF	CITATIONS
37	Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Reports, 2020, 2, 100167.	4.9	51
38	Simple strategy to induce antibodies of distinct specificity: Application to the mapping of gp120 and inhibition of HIV-1 infectivity. European Journal of Immunology, 1995, 25, 877-883.	2.9	48
39	<i>In vivo</i> depletion of DC impairs the antiâ€tumor effect of agonistic antiâ€CD137 mAb. European Journal of Immunology, 2009, 39, 2424-2436.	2.9	47
40	Wilms' Tumor 1 Gene Expression in Hepatocellular Carcinoma Promotes Cell Dedifferentiation and Resistance to Chemotherapy. Cancer Research, 2009, 69, 1358-1367.	0.9	46
41	Regulation of Amphiregulin Gene Expression by β-Catenin Signaling in Human Hepatocellular Carcinoma Cells: A Novel Crosstalk between FGF19 and the EGFR System. PLoS ONE, 2012, 7, e52711.	2.5	45
42	Oncogenic activation of a human cyclin A2 targeted to the endoplasmic reticulum upon Hepatitis B virus genome insertion. Oncogene, 1998, 16, 1277-1288.	5.9	44
43	Lack of Abcc3 expression impairs bile-acid induced liver growth and delays hepatic regeneration after partial hepatectomy in mice. Journal of Hepatology, 2012, 56, 367-373.	3.7	43
44	Matrix metalloproteinaseâ€10 expression is induced during hepatic injury and plays a fundamental role in liver tissue repair. Liver International, 2014, 34, e257-70.	3.9	43
45	ACOX2 deficiency: An inborn error of bile acid synthesis identified in an adolescent with persistent hypertransaminasemia. Journal of Hepatology, 2017, 66, 581-588.	3.7	43
46	The Epidermal Growth Factor Receptor Ligand Amphiregulin Protects From Cholestatic Liver Injury and Regulates Bile Acids Synthesis. Hepatology, 2019, 69, 1632-1647.	7.3	42
47	Epidermal Growth Factor Receptor Signaling in Hepatocellular Carcinoma: Inflammatory Activation and a New Intracellular Regulatory Mechanism. Digestive Diseases, 2012, 30, 524-531.	1.9	41
48	Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I. International Journal of Biochemistry and Cell Biology, 2002, 34, 242-252.	2.8	40
49	Impairment of pre-mRNA splicing in liver disease: Mechanisms and consequences. World Journal of Gastroenterology, 2010, 16, 3091.	3.3	40
50	Regulation of hepatocyte identity and quiescence. Cellular and Molecular Life Sciences, 2015, 72, 3831-3851.	5.4	38
51	MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. Cell Death and Disease, 2018, 9, 958.	6.3	38
52	Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach. Cancers, 2020, 12, 1644.	3.7	38
53	Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis. Gut, 2021, 70, gutjnl-2019-320205.	12.1	36
54	Immunotherapy and immunoescape in colorectal cancer. World Journal of Gastroenterology, 2007, 13, 5822.	3.3	36

#	Article	IF	CITATIONS
55	Fibroblast Growth Factor 15/19 in Hepatocarcinogenesis. Digestive Diseases, 2017, 35, 158-165.	1.9	35
56	Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1326-1334.	3.8	34
57	Methylthioadenosine phosphorylase gene expression is impaired in human liver cirrhosis and hepatocarcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1690, 276-284.	3.8	32
58	Next-generation sequencing of bile cell-free DNA for the early detection of patients with malignant biliary strictures. Gut, 2022, 71, 1141-1151.	12.1	32
59	Splicing regulator SLU7 preserves survival of hepatocellular carcinoma cells and other solid tumors via oncogenic miR-17-92 cluster expression. Oncogene, 2016, 35, 4719-4729.	5.9	27
60	Dual Targeting of G9a and DNA Methyltransferaseâ€1 for the Treatment of Experimental Cholangiocarcinoma. Hepatology, 2021, 73, 2380-2396.	7.3	26
61	Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities. International Journal of Molecular Sciences, 2020, 21, 5500.	4.1	25
62	Epigenetic Biomarkers for the Diagnosis and Treatment of Liver Disease. Cancers, 2021, 13, 1265.	3.7	23
63	Immunogenicity of variable regions of hepatitis C virus proteins: selection and modification of peptide epitopes to assess hepatitis C virus genotypes by ELISA Journal of General Virology, 1999, 80, 727-738.	2.9	23
64	Oral Methylthioadenosine Administration Attenuates Fibrosis and Chronic Liver Disease Progression in Mdr2â^'/â^' Mice. PLoS ONE, 2010, 5, e15690.	2.5	23
65	Deciphering liver zonation: New insights into the β-catenin, Tcf4, and HNF4α triad. Hepatology, 2014, 59, 2080-2082.	7.3	21
66	Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target?. Cells, 2020, 9, 2321.	4.1	21
67	Interleukin-15 liver gene transfer increases the number and function of IKDCs and NK cells. Gene Therapy, 2008, 15, 473-483.	4.5	20
68	Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget, 2016, 7, 49194-49216.	1.8	20
69	Influence of Impaired Liver Methionine Metabolism on the Development of Vascular Disease and Inflammation. Current Medicinal Chemistry Cardiovascular and Hematological Agents, 2005, 3, 267-281.	1.7	18
70	Hepatitis C virus infection of primary tupaia hepatocytes leads to selection of quasispecies variants, induction of interferon-stimulated genes and NF-κB nuclear translocation. Journal of General Virology, 2005, 86, 3065-3074.	2.9	18
71	Molecular Profiling of Hepatocellular Carcinoma in Mice with a Chronic Deficiency of HepaticS-Adenosylmethionine:Â Relevance in Human Liver Diseases. Journal of Proteome Research, 2006, 5, 944-953.	3.7	18
72	FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations. Molecular Metabolism, 2021, 43, 101113.	6.5	18

#	Article	IF	CITATIONS
73	PHAROH lncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR. ELife, 2021, 10, .	6.0	18
74	The epidermal growth factor receptor ligand amphiregulin is a negative regulator of hepatic acute-phase gene expression. Journal of Hepatology, 2009, 51, 1010-1020.	3.7	17
75	Engineered fibroblast growth factor 19 protects from acetaminophen-induced liver injury and stimulates aged liver regeneration in mice. Cell Death and Disease, 2017, 8, e3083-e3083.	6.3	17
76	Novel Pharmacologic Strategies to Protect the Liver from Ischemia- Reperfusion Injury. Recent Patents on Cardiovascular Drug Discovery, 2008, 3, 9-18.	1.5	16
77	Making sorafenib irresistible: In vivo screening for mechanisms of therapy resistance in hepatocellular carcinoma hits on Mapk14. Hepatology, 2015, 61, 1755-1757.	7.3	16
78	Overcoming class II-linked non-responsiveness to hepatitis B vaccine. Vaccine, 1994, 12, 867-871.	3.8	15
79	Targeting CCL2/CCR2 in Tumor-Infiltrating Macrophages: A Tool Emerging Out of the Box Against Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 293-294.	4.5	15
80	Liquid biopsy for cancer management: a revolutionary but still limited new tool for precision medicine. Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2020, 1, .	0.2	15
81	Treatment of murine fulminant hepatitis with genetically engineered endothelial progenitor cells. Journal of Hepatology, 2011, 55, 828-837.	3.7	14
82	Splicing alterations contributing to cancer hallmarks in the liver: central role of dedifferentiation and genome instability. Translational Gastroenterology and Hepatology, 2018, 3, 84-84.	3.0	14
83	Amphiregulin Aggravates Glomerulonephritis via Recruitment and Activation of Myeloid Cells. Journal of the American Society of Nephrology: JASN, 2020, 31, 1996-2012.	6.1	14
84	Multipotent Adult Progenitor Cells (MAPC) contribute to hepatocarcinoma neovasculature. Biochemical and Biophysical Research Communications, 2007, 364, 92-99.	2.1	12
85	Splicing Factor SLU7 Prevents Oxidative Stressâ€Mediated Hepatocyte Nuclear Factor 4α Degradation, Preserving Hepatic Differentiation and Protecting From Liver Damage. Hepatology, 2021, 74, 2791-2807.	7.3	12
86	HOXD8 hypermethylation as a fully sensitive and specific biomarker for biliary tract cancer detectable in tissue and bile samples. British Journal of Cancer, 2022, 126, 1783-1794.	6.4	12
87	Differential regulation of the JNK/AP-1 pathway by S-adenosylmethionine and methylthioadenosine in primary rat hepatocytes versus HuH7 hepatoma cells. American Journal of Physiology - Renal Physiology, 2006, 290, G1186-G1193.	3.4	11
88	Fibroblast growth factors 19 and 21 in acute liver damage. Annals of Translational Medicine, 2018, 6, 257-257.	1.7	11
89	Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers, 2022, 14, 18.	3.7	11
90	Targeting the correct target in HCC. Gut, 2017, 66, 1352-1354.	12.1	10

#	Article	IF	CITATIONS
91	Chromatin dynamics during liver regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 38-46.	5.0	10
92	Alterations in the expression and activity of pre-mRNA splicing factors in hepatocarcinogenesis. Hepatic Oncology, 2014, 1, 241-252.	4.2	9
93	New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	8.6	9
94	New therapeutic targets in HCC: Reptin ATPase and HCC senescence. Journal of Hepatology, 2010, 52, 633-634.	3.7	8
95	Conflicting relationship between platelets and prognosis of hepatocellular carcinoma: is plateletâ€derived serotonin involved in?. Liver International, 2015, 35, 2484-2484.	3.9	8
96	Detection of anti-hepatitis C virus antibodies by ELISA using synthetic peptides. Journal of Hepatology, 1993, 18, 80-84.	3.7	7
97	ARMCX3 Mediates Susceptibility to Hepatic Tumorigenesis Promoted by Dietary Lipotoxicity. Cancers, 2021, 13, 1110.	3.7	7
98	Platelet-derived growth factor D: A new player in the complex cross-talk between cholangiocarcinoma cells and cancer-associated fibroblasts. Hepatology, 2013, 58, 853-855.	7.3	6
99	Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers, 2020, 12, 3748.	3.7	6
100	DNA Methylation Regulates a Set of Long Non-Coding RNAs Compromising Hepatic Identity during Hepatocarcinogenesis. Cancers, 2022, 14, 2048.	3.7	5
101	The Amphiregulin/EGFR axis protects from lupus nephritis via downregulation of pathogenic CD4+ T helper cell responses. Journal of Autoimmunity, 2022, 129, 102829.	6.5	5
102	New molecular interactions of câ€Myc in cholangiocarcinoma may open new therapeutic opportunities. Hepatology, 2016, 64, 336-339.	7.3	3
103	A new animal model of atrophy–hypertrophy complex and liver damage following Yttrium-90 lobar selective internal radiation therapy in rabbits. Scientific Reports, 2022, 12, 1777.	3.3	3
104	Activation of the Unfolded Protein Response (UPR) Is Associated with Cholangiocellular Injury, Fibrosis and Carcinogenesis in an Experimental Model of Fibropolycystic Liver Disease. Cancers, 2022, 14, 78.	3.7	3
105	Further evidence on the janusâ€faced nature of the epidermal growth factor receptor: From liver regeneration to hepatocarcinogenesis. Hepatology, 2016, 63, 371-374.	7.3	2
106	Development of a New Hepatoprotective and Proregenerative Molecule Based on Fibroblast Growth Factor 15/19. Journal of Hepatology, 2016, 64, S184.	3.7	2
107	The splicing regulator SLU7 is required to preserve DNMT1 protein stability and DNA methylation. Nucleic Acids Research, 2021, 49, 8592-8609.	14.5	2
108	Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma: A novel role for S-adenosylmethionine. Journal of Hepatology, 2000, 32, 209.	3.7	1

#	Article	IF	CITATIONS
109	The Wilms' tumor suppressor: A developmental-restricted factor reexpressed in liver cirrhosis. Journal of Hepatology, 2003, 38, 74-75.	3.7	1
110	LKB1: Controlling Quiescence and Genomic Integrity at Home. Trends in Endocrinology and Metabolism, 2018, 29, 668-670.	7.1	1
111	PS-043-Dual targeting of G9a and DNM-methyltransferase-1 for the treatment of experimental cholangiocarcinoma. Journal of Hepatology, 2019, 70, e27-e28.	3.7	1
112	Vitamin A in Nonalcoholic Fatty Liver Disease: A Key Player in an Offside Position?. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 291-293.	4.5	1
113	177 5′-Methylthioadenosine modulates the inflammatory response to bacterial lipopolysaccharide. Journal of Hepatology, 2004, 40, 58.	3.7	0
114	350 Amphiregulin a novel determinant in the resistance of HCC cells to apoptosis induced by TGF-Î ² and cytostatic drugs. Journal of Hepatology, 2006, 44, S134.	3.7	0
115	106 Interferon-Producing Killer Dendritic Cells and Natural Killer Cells Response to Interleukin-15 Liver Gene Transfer. Cytokine, 2007, 39, 29.	3.2	0
116	[73] AMPHIREGULIN INDUCES THE EXPRESSION OF ONCOGENIC ISOFORMS OF P73 IN HOC THROUGH THE MODULATION OF ITS ALTERNATIVE SPLICING. Journal of Hepatology, 2007, 46, S33.	3.7	0
117	[330] AMPHIREGULIN, A GROWTH FACTOR OF THE EGF FAMILY, PARTICIPATES IN THE DEVELOPMENT OF LIVER FIBROSIS. Journal of Hepatology, 2007, 46, S130.	3.7	0
118	46 TREATMENT OF EXPERIMENTAL FULMINANT HEPATIC FAILURE (FHF) BY ENDOTELIAL PROGENITOR CELLS (EPC) TRANSDUCED BY AN ADENOVIRUS ENCODING CARDIOTROPHIN-1 (CT-1). Journal of Hepatology, 2009, 50, S19-S20.	3.7	0
119	AREG (amphiregulin (schwannoma-derived growth factor)). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2011, , .	0.1	0
120	66 CONTROL OF BILE ACIDS LEVELS BY FGF15 IS ESSENTIAL FOR NORMAL LIVER REGENERATION AFTER PARTIAL HEPATECTOMY. Journal of Hepatology, 2012, 56, S29.	3.7	0
121	300 IDENTIFICATION OF MATRIX METALLOPROTEASE 10 (MMP10) AS A KEY NEW MEDIATOR OF THE REGENERATIVE RESPONSE OF THE LIVER. Journal of Hepatology, 2013, 58, S126.	3.7	0
122	86 REGULATION OF ALTERNATIVE SPLICING BY SLU7 IS ESSENTIAL FOR HCC CELL SURVIVAL. Journal of Hepatology, 2013, 58, S38.	3.7	0
123	New mechanisms involving the EGFR and FGF15/19 systems in liver regeneration and carcinogenesis. European Journal of Medical Research, 2014, 19, .	2.2	0
124	O152 THE SPLICING FACTOR SLU7 IS ESSENTIAL FOR THE PRESERVATION OF LIVER DIFFERENTIATION, METABOLIC FUNCTION AND QUIESCENCE. Journal of Hepatology, 2014, 60, S63.	3.7	0
125	P62 MMP10 EXPRESSION PROTECTS FROM ACUTE LIVER INJURY BUT CONTRIBUTES TO HEPATOCELLULAR CARCINOMA PROGRESSION. Journal of Hepatology, 2014, 60, S87.	3.7	0
126	O97 GUT-DERIVED FGF15 PLAYS A CENTRAL ROLE IN FIBROSIS-ASSOCIATED HEPATOCARCINOGENESIS. Journal of Hepatology, 2014, 60, S40.	3.7	0

#	Article	IF	CITATIONS
127	Oxidative Stress Mechanisms in Hepatocarcinogenesis. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 449-477.	0.4	0
128	O096 : Matrix metalloproteinase-10 contributes to hepatocellular carcinoma development in a novel crosstalk with stromal derived growth factor 1/C-X-C chemokine receptor 4 axis. Journal of Hepatology, 2015, 62, S242.	3.7	0
129	Development of novel epigenetic inhibitors for the treatment of hepatocellular carcinoma. Journal of Hepatology, 2017, 66, S76-S77.	3.7	0
130	SLU7 is a survival factor for cancer cells working as a mitotic regulator. Journal of Hepatology, 2017, 66, S645.	3.7	0
131	Novel role of amphiregulin in bile acids metabolism and protection from cholestatic liver injury. Journal of Hepatology, 2018, 68, S74.	3.7	0
132	THU-468-SLU7 controls genome integrity: New role of truncated SRSF3 proteins. Journal of Hepatology, 2019, 70, e365-e366.	3.7	0
133	THU-064-Identification of new epigenetic targets in hepatic fibrosis. Journal of Hepatology, 2019, 70, e188.	3.7	0
134	Hepatocyte-specific deletion of ERK5 modulates liver regeneration in mice. Digestive and Liver Disease, 2019, 51, e43.	0.9	0
135	Amphiregulin. , 2011, , 158-160.		0
136	Amphiregulin. , 2014, , 204-207.		0
137	Amphiregulin. , 2014, , 1-4.		0