
Chikako Yasui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9931124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE LIFETIME OF PROTOPLANETARY DISKS IN A LOW-METALLICITY ENVIRONMENT. Astrophysical Journal, 2009, 705, 54-63.	4.5	76
2	SHORT LIFETIME OF PROTOPLANETARY DISKS IN LOW-METALLICITY ENVIRONMENTS. Astrophysical Journal Letters, 2010, 723, L113-L116.	8.3	54
3	Star Formation in the Most Distant Molecular Cloud in the Extreme Outer Galaxy: A Laboratory of Star Formation in an Early Epoch of the Galaxy's Formation. Astrophysical Journal, 2008, 683, 178-188.	4.5	32
4	Rapid evolution of the innermost dust disc of protoplanetary discs surrounding intermediate-mass stars. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2543-2559.	4.4	31
5	High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED. Proceedings of SPIE, 2016, , .	0.8	29
6	Star Formation in the Extreme Outer Galaxy: Digel Cloud 2 Clusters. Astrophysical Journal, 2008, 675, 443-453.	4.5	28
7	NEAR-INFRARED DIFFUSE INTERSTELLAR BANDS IN 0.91-1.32 μm. Astrophysical Journal, 2015, 800, 137.	4.5	28
8	NEAR INFRARED DIFFUSE INTERSTELLAR BANDS TOWARD THE CYGNUS OB2 ASSOCIATION. Astrophysical Journal, 2016, 821, 42.	4.5	27
9	Deep Nearâ€Infrared Imaging of an Embedded Cluster in the Extreme Outer Galaxy: Census of Supernovaâ€Triggered Star Formation. Astrophysical Journal, 2006, 649, 753-758.	4.5	25
10	LINE-DEPTH RATIOS IN <i>H</i> -BAND SPECTRA TO DETERMINE EFFECTIVE TEMPERATURES OF G- AND K-TYPE GIANTS AND SUPERGIANTS. Astrophysical Journal, 2015, 812, 64.	4.5	23
11	Correction of Near-infrared High-resolution Spectra for Telluric Absorption at 0.90–1.35 <i>μ</i> m. Publications of the Astronomical Society of the Pacific, 2018, 130, 074502.	3.1	22
12	Machined immersion grating with theoretically predicted diffraction efficiency. Applied Optics, 2015, 54, 5193.	2.1	21
13	DISCOVERY OF STAR FORMATION IN THE EXTREME OUTER GALAXY POSSIBLY INDUCED BY A HIGH-VELOCITY CLOUD IMPACT. Astrophysical Journal, 2014, 795, 66.	4.5	18
14	LOW-METALLICITY YOUNG CLUSTERS IN THE OUTER GALAXY. II. SH 2-208. Astronomical Journal, 2016, 151, 115.	4.7	18
15	Method to estimate the effective temperatures of late-type giants using line-depth ratios in the wavelength range 0.97–1.32Âl¼m. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4993-5001.	4.4	18
16	The Detection of a Hot Molecular Core in the Extreme Outer Galaxy. Astrophysical Journal, 2021, 922, 206.	4.5	16
17	LOW-METALLICITY YOUNG CLUSTERS IN THE OUTER GALAXY. I. Sh 2-207. Astronomical Journal, 2016, 151, 50.	4.7	15
18	Fe i Lines in 0.91–1.33 μm Spectra of Red Giants for Measuring the Microturbulence and Metallicities. Astrophysical Journal, 2019, 875, 129.	4.5	14

Chikako Yasui

#	Article	IF	CITATIONS
19	Effective temperatures of red supergiants estimated from line-depth ratios of iron lines in the <i>YJ</i> bands, 0.97-1.32μm. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4210-4226.	4.4	13
20	WINERED: a warm near-infrared high-resolution spectrograph. , 2006, 6269, 1224.		11
21	Highly Sensitive, Non-cryogenic NIR High-resolution Spectrograph, WINERED. Publications of the Astronomical Society of the Pacific, 2022, 134, 015004.	3.1	11
22	Warm infrared echelle spectrograph (WINERED): testing of optical components and performance evaluation of the optical system. Proceedings of SPIE, 2008, , .	0.8	10
23	Identification of Absorption Lines of Heavy Metals in the Wavelength Range 0.97–1.32 μm. Astrophysical Journal, Supplement Series, 2020, 246, 10.	7.7	10
24	Mg ii and Fe ii Fluxes of Luminous Quasars at zÂâ^¼Â2.7 and the Evaluation of the Baldwin Effect in the Flux-to-abundance Conversion Method for Quasars. Astrophysical Journal, 2020, 904, 162.	4.5	10
25	Deep CO Observations and the CO-to-H <scp>2</scp> Conversion Factor in DDO 154, a Low Metallicity Dwarf Irregular Galaxy. Publication of the Astronomical Society of Japan, 2011, 63, L1-L5.	2.5	9
26	First Detection of A–X (0,0) Bands of Interstellar C ₂ and CN. Astrophysical Journal, 2019, 881, 143.	4.5	9
27	Diamond-machined ZnSe immersion grating for NIR high-resolution spectroscopy. , 2008, , .		8
28	Absorption Lines in the 0.91–1.33 μm Spectra of Red Giants for Measuring Abundances of Mg, Si, Ca, Ti, Cr, and Ni. Astrophysical Journal, 2021, 913, 62.	4.5	8
29	Fabrication and current optical performance of a large diamond-machined ZnSe immersion grating. Proceedings of SPIE, 2010, , .	0.8	7
30	The effect of surface gravity on line-depth ratios in the wavelength range 0.97–1.32µm. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1724-1734.	4.4	7
31	Low-metallicity Young Clusters in the Outer Galaxy. III. Sh 2-127. Astronomical Journal, 2021, 161, 139.	4.7	7
32	First high-efficiency and high-resolution (R=80,000) NIR spectroscopy with high-blazed Echelle grating: WINERED HIRES modes. Proceedings of SPIE, 2016, , .	0.8	7
33	WINERED: optical design of warm infrared echelle spectrograph. , 2006, , .		6
34	High-efficiency silicon immersion grating by electron-beam lithography. , 2008, , .		6
35	Near-infrared Spectroscopic Observations of Comet C/2013 R1 (Lovejoy) by WINERED: CN Red-system Band Emission. Astronomical Journal, 2017, 154, 45.	4.7	6
36	Possible Progression of Mass-flow Processes around Young Intermediate-mass Stars Based on High-resolution Near-infrared Spectroscopy. I. Taurus. Astrophysical Journal, 2019, 886, 115.	4.5	6

Chikako Yasui

#	Article	IF	CITATIONS
37	UTIRAC: University of Tokyo infrared array control system developed for WINERED. , 2006, , .		5
38	Development of CdZnTe immersion grating for spaceborne application. Proceedings of SPIE, 2012, , .	0.8	5
39	Star Formation Activity Beyond the Outer Arm. I. WISE-selected Candidate Star-forming Regions. Astronomical Journal, 2017, 154, 163.	4.7	5
40	Very high-sensitive NIR high-resolution spectrograph WINERED: on-going observations at NTT. , 2018, , .		5
41	ZnSe immersion grating in the short NIR region. Proceedings of SPIE, 2014, , .	0.8	4
42	A newly identified emission-line region around P Cygni. Monthly Notices of the Royal Astronomical Society, 2018, 481, 793-805.	4.4	4
43	High resolution spectrograph unit (HRU) for the SUBARU/IRCS. Proceedings of SPIE, 2008, , .	0.8	3
44	The precise measurement of the attenuation coefficients of various IR optical materials applicable to immersion grating. Proceedings of SPIE, 2014, , .	0.8	3
45	Infrared Attenuation Spectrum of Bulk High-Resistivity CdZnTe Single Crystal in Transparent Wavelength Region Between Electronic and Lattice Absorptions. Journal of Electronic Materials, 2017, 46, 282-287.	2.2	3
46	Discovery of a distant molecular cloud in the extreme outer Galaxy with the Nobeyama 45Âm telescope. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	3
47	The environment around the young massive star cluster RSGC 1 and HESS J1837â~'069. Publication of the Astronomical Society of Japan, 2014, 66, 19.	2.5	2
48	Impact of the initial disk mass function on the disk fraction. Publication of the Astronomical Society of Japan, 2015, 67, 120.	2.5	2
49	WINERED High-resolution Near-infrared Line Catalog: A-type Star. Astrophysical Journal, Supplement Series, 2018, 239, 19.	7.7	2
50	A Very Metal-poor RR Lyrae Star with a Disk Orbit Found in the Solar Neighborhood. Astrophysical Journal, 2022, 925, 10.	4.5	2
51	Cryogenic performance of high-efficiency germanium immersion grating. , 2016, , .		1
52	A spatially-resolved study of initial mass function in the outer Galaxy. Proceedings of the International Astronomical Union, 2016, 11, 34-36.	0.0	1
53	Spitzer Mid-infrared Study of Sh 2-208: Evolution of Protoplanetary Disks in Low-metallicity Environments. Astrophysical Journal, 2021, 914, 115.	4.5	1
54	Reflective optical system made entirely of ultra low thermal expansion ceramics: a possibility of genuine athermal cryogenic IR instrument. , 2018, , .		1

#	Article	IF	CITATIONS
55	Derivation of stellar abundances with near-infrared spectra: The case of metallic standard stars. , 2014, , .		0
56	SUBARU/IRCS near-infrared spectroscopy of the young cluster GLIMPSE9 in the inner galaxy. , 2014, , .		0
57	HERBIG Ae/Be CANDIDATE STARS IN THE INNERMOST GALACTIC DISK: QUARTET CLUSTER. Astrophysical Journal, 2016, 817, 181.	4.5	0
58	Star-formation efficiency in the outer Galaxy. Proceedings of the International Astronomical Union, 2016, 11, 31-33.	0.0	0