Yoshihiko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9930826/publications.pdf Version: 2024-02-01

Υσεμιμικο

#	Article	IF	CITATIONS
1	Press Bonding of Heated Porous Aluminum and Polycarbonate. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2022, 86, 17-21.	0.4	4
2	Effect of porosity of aluminum foam on welding between aluminum foam and polycarbonate plate during friction welding. International Journal of Advanced Manufacturing Technology, 2022, 120, 1071-1078.	3.0	8
3	Bonding of porous aluminum to polycarbonate by cutting and pressing immediately after foaming. Keikinzoku/Journal of Japan Institute of Light Metals, 2022, 72, 27-29.	0.4	1
4	Effects of Rotational Speed and Processing Time on Bonding Strength of Porous Aluminum and Thermoplastic Resin during Friction Welding. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2022, 86, 71-76.	0.4	2
5	Roll forming of aluminum foam immediately after precursor foaming. Results in Engineering, 2021, 10, 100224.	5.1	4
6	Friction welding of porous aluminum and polycarbonate plate. Materials Letters, 2021, 304, 130610.	2.6	9
7	Fabrication of aluminum foam with complex shapes using pin screen mold and effect of arrangement of pins on its surface morphology. Journal of Porous Materials, 2020, 27, 347-353.	2.6	3
8	Foaming of A1050 aluminum precursor by generated frictional heat during friction stir processing of steel plate. International Journal of Advanced Manufacturing Technology, 2020, 106, 3131-3137.	3.0	9
9	Compressive properties of two-layered aluminum foams with closed-cell and open-cell structures. Materials Today Communications, 2020, 24, 101249.	1.9	8
10	Foaming behavior of blowing- and stabilization-agent-free aluminum foam precursor during spot friction stir welding. Journal of Materials Processing Technology, 2019, 265, 185-190.	6.3	10
11	Refoaming of deformed aluminum foam by precursor foaming process. Journal of Porous Materials, 2019, 26, 1149-1155.	2.6	6
12	Foaming of aluminum foam precursor during friction stir welding. Journal of Materials Processing Technology, 2018, 259, 109-115.	6.3	15
13	Fabrication of bilayer tube consisting of outer aluminum foam tube and inner dense aluminum tube by friction stir back extrusion. Materials Today Communications, 2018, 15, 36-42.	1.9	10
14	Fabrication of Al foam with harmonic structure by Cu addition using sintering and dissolution process. Materials Letters, 2018, 230, 120-122.	2.6	7
15	Forming of aluminum foam using steel mesh as die during foaming of precursor by optical heating. Optics and Laser Technology, 2018, 108, 496-501.	4.6	31
16	Fabrication of Two-Layered Aluminum Foam Having Layers with Closed-Cell and Open-Cell Pores. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4452-4455.	2.2	8
17	Functionally graded aluminum foam consisting of dissimilar aluminum alloys fabricated by sintering and dissolution process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 544-551.	5.6	34
18	Reproducibility of Aluminum Foam by Combining Sintering and Dissolution Process with Precursor Foaming Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3161-3163.	2.2	5

Yoshihiko

#	Article	IF	CITATIONS
19	Cutting process for aluminum foam fabricated by sintering and dissolution process. Advanced Powder Technology, 2017, 28, 1426-1429.	4.1	8
20	Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion. Journal of Materials Engineering and Performance, 2017, 26, 894-900.	2.5	22
21	Fabrication and Compression Properties of Functionally Graded Copper Foam Made Using Friction Powder Sintering and Dissolution. Journal of Materials Engineering and Performance, 2017, 26, 4508-4513.	2.5	3
22	Functionally Graded Aluminum Foam Fabricated by Friction Powder Sintering Process with Traversing Tool. Journal of Materials Engineering and Performance, 2016, 25, 3691-3696.	2.5	20
23	Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent. Materials, 2015, 8, 7161-7168.	2.9	7
24	Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding. Materials, 2015, 8, 7180-7190.	2.9	16
25	Drop weight impact behavior of functionally graded aluminum foam consisting of A1050 and A6061 aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 597-603.	5.6	46
26	Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties. Materials, 2014, 7, 6796-6810.	2.9	24
27	Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route. Materials, 2014, 7, 2382-2394.	2.9	17
28	Aluminum alloy foam core sandwich panels fabricated from die casting aluminum alloy by friction stir welding route. Journal of Materials Processing Technology, 2014, 214, 1928-1934.	6.3	56
29	Fabrication and compression properties of functionally graded foam with uniform pore structures consisting of dissimilar A1050 and A6061 aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 163-170.	5.6	57
30	Deformation Behavior Estimation of Aluminum Foam by X-ray CT Image-based Finite Element Analysis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1880-1886.	2.2	27
31	Friction Powder Compaction for Fabrication of Open-Cell Aluminum Foam by the Sintering and Dissolution Process Route. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 802-805.	2.2	24
32	Fabrication of A1050-A6061 Functionally Graded Aluminum Foam by Friction Stir Processing Route. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3585-3589.	2.2	32
33	Effect of the Amount of Gases on the Foaming Efficiency of Porous Aluminum Using Die Castings Fabricated by Friction Stir Processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1883-1886.	2.2	17
34	Fabrication of Aluminum Foam/Dense Steel Composite by Friction Stir Welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2184-2186.	2.2	27
35	Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing. Journal of Materials Processing Technology, 2010, 210, 288-292.	6.3	117
36	Fabrication of porous aluminum composites containing hollow ceramics. Journal of Porous Materials, 0, , .	2.6	1