
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/993042/publications.pdf Version: 2024-02-01

KEN C RVAN

#	Article	IF	CITATIONS
1	An analysis of the genus Leucothoe Leach, 1814 (Amphipoda: Leucothoidae) in New Zealand, with the description of two new species symbiotic with ascidians and sponges. Journal of Crustacean Biology, 2021, 41, .	0.8	1
2	An ecotoxicological assessment of the acute toxicity of anatoxin congeners on New Zealand Deleatidium species (mayflies). Inland Waters, 2020, 10, 101-108.	2.2	2
3	Rapid Manipulation in Irradiance Induces Oxidative Free-Radical Release in a Fast-Ice Algal Community (McMurdo Sound, Antarctica). Frontiers in Plant Science, 2020, 11, 588005.	3.6	4
4	Community assembly in a modular organism: the impact of environmental filtering on bryozoan colony form and polymorphism. Ecology, 2020, 101, e03106.	3.2	8
5	Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshwater Biology, 2020, 65, 1824-1842.	2.4	71
6	Mapping the in situ microspatial distribution of ice algal biomass through hyperspectral imaging of sea-ice cores. Scientific Reports, 2020, 10, 21848.	3.3	10
7	Differential strain response in alkaline phosphatase activity to available phosphorus in Microcoleus autumnalis. Harmful Algae, 2019, 89, 101664.	4.8	7
8	Modularity is the mother of invention: a review of polymorphism in bryozoans. Biological Reviews, 2019, 94, 773-809.	10.4	33
9	Multiple cyanotoxin congeners produced by sub-dominant cyanobacterial taxa in riverine cyanobacterial and algal mats. PLoS ONE, 2019, 14, e0220422.	2.5	15
10	Response of Antarctic sea-ice algae to an experimental decrease in pH: a preliminary analysis from chlorophyll fluorescence imaging of melting ice. Polar Research, 2018, 37, 1438696.	1.6	8
11	Nutritional composition of the diet of the northern yellow-cheeked crested gibbon (Nomascus) Tj ETQq1 1 0.784	4314.rgBT 1.1	/Oyerlock 10
12	Development and Application of a Quantitative PCR Assay to Assess Genotype Dynamics and Anatoxin Content in Microcoleus autumnalis-Dominated Mats. Toxins, 2018, 10, 431.	3.4	16
13	Bacterial bioclusters relate to hydrochemistry in New Zealand groundwater. FEMS Microbiology Ecology, 2018, 94, .	2.7	10
14	Bait-attending amphipods of the Tonga Trench and depth-stratified population structure in the scavenging amphipod <i>Hirondellea dubia</i> Dahl, 1959. PeerJ, 2018, 6, e5994.	2.0	6
15	<i>In situ</i> light responses of the proteorhodopsin-bearing Antarctic sea-ice bacterium, <i>Psychroflexus torques</i> . ISME Journal, 2017, 11, 2155-2158.	9.8	3
16	Effects of CO2 concentration on a late summer surface sea ice community. Marine Biology, 2017, 164, 1.	1.5	11
17	High resolution microscopy reveals significant impacts of ocean acidification and warming on larval shell development in Laternula elliptica. PLoS ONE, 2017, 12, e0175706.	2.5	21
18	The role of nitrogen and phosphorus in regulating <i>Phormidium</i> sp. (cyanobacteria) growth and anatoxin production. FEMS Microbiology Ecology, 2016, 92, fiw021.	2.7	40

#	Article	IF	CITATIONS
19	Development of Habitat Suitability Criteria and In-Stream Habitat Assessment for the Benthic Cyanobacteria <i>Phormidium</i> . River Research and Applications, 2015, 31, 98-108.	1.7	30
20	Successional Change in Microbial Communities of Benthic Phormidium-Dominated Biofilms. Microbial Ecology, 2015, 69, 254-266.	2.8	44
21	Fertilisation and larval development in an Antarctic bivalve, Laternula elliptica, under reduced pH and elevated temperatures. Marine Ecology - Progress Series, 2015, 536, 187-201.	1.9	15
22	The Response of Antarctic Sea Ice Algae to Changes in pH and CO2. PLoS ONE, 2014, 9, e86984.	2.5	51
23	Relationships between molecular bacterial diversity and chemistry of groundwater in the Wairarapa Valley, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 524-539.	2.0	5
24	Can bottom ice algae tolerate irradiance and temperature changes?. Journal of Experimental Marine Biology and Ecology, 2014, 461, 516-527.	1.5	8
25	Effects of nitrogen and phosphorus on anatoxin-a, homoanatoxin-a, dihydroanatoxin-a and dihydrohomoanatoxin-a production by Phormidium autumnale. Toxicon, 2014, 92, 179-185.	1.6	30
26	Antarctic sea-ice microbial communities show distinct patterns of zonation in response to algal-derived substrates. Aquatic Microbial Ecology, 2014, 73, 123-134.	1.8	16
27	Extracellular organic carbon dynamics during a bottom-ice algal bloom (Antarctica). Aquatic Microbial Ecology, 2014, 73, 195-210.	1.8	6
28	National survey of molecular bacterial diversity of New Zealand groundwater: relationships between biodiversity, groundwater chemistry and aquifer characteristics. FEMS Microbiology Ecology, 2013, 86, 490-504.	2.7	26
29	A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132157.	2.6	42
30	Phylogenetic analyses of bacteria in sea ice at Cape Hallett, Antarctica. New Zealand Journal of Marine and Freshwater Research, 2012, 46, 3-12.	2.0	9
31	Within-Mat Variability in Anatoxin-a and Homoanatoxin-a Production among Benthic Phormidium (Cyanobacteria) Strains. Toxins, 2012, 4, 900-912.	3.4	77
32	Preliminary evidence for the microbial loop in Antarctic sea ice using microcosm simulations. Antarctic Science, 2012, 24, 547-553.	0.9	9
33	Antarctic coastal microalgal primary production and photosynthesis. Marine Biology, 2012, 159, 2827-2837.	1.5	16
34	Recent Advances and Future Perspectives in Microbial Phototrophy in Antarctic Sea Ice. Biology, 2012, 1, 542-556.	2.8	9
35	THE EFFECTS OF ULTRAVIOLETâ€B RADIATION ON ANTARCTIC SEAâ€ICE ALGAE ¹ . Journal of Phycology, 2012, 48, 74-84.	2.3	16
36	The origin of cyanobacteria in Antarctic sea ice: marine or freshwater?. Environmental Microbiology Reports, 2012, 4, 479-483.	2.4	18

#	Article	IF	CITATIONS
37	The physiological response to increased temperature in over-wintering sea ice algae and phytoplankton in McMurdo Sound, Antarctica and TromsÃ, Sound, Norway. Journal of Experimental Marine Biology and Ecology, 2012, 428, 57-66.	1.5	19
38	lridoid and Phenylethanoid Glucosides fromVeronica lavaudiana. Journal of Natural Products, 2011, 74, 1477-1483.	3.0	18
39	Archaeal diversity revealed in Antarctic sea ice. Antarctic Science, 2011, 23, 531-536.	0.9	33
40	Aerobic anoxygenic phototrophic bacteria in Antarctic sea ice and seawater. Environmental Microbiology Reports, 2011, 3, 710-716.	2.4	25
41	Chlorophyll fluorescence imaging analysis of the responses of Antarctic bottom-ice algae to light and salinity during melting. Journal of Experimental Marine Biology and Ecology, 2011, 399, 156-161.	1.5	25
42	Response of sea-ice microbial communities to environmental disturbance: an in situ transplant experiment in the Antarctic. Marine Ecology - Progress Series, 2011, 424, 25-37.	1.9	22
43	Phenylethanoid and Iridoid Glycosides in the New Zealand Snow Hebes (Veronica, Plantaginaceae). Chemical and Pharmaceutical Bulletin, 2010, 58, 703-711.	1.3	22
44	In situ net primary productivity and photosynthesis of Antarctic sea ice algal, phytoplankton and benthic algal communities. Marine Biology, 2010, 157, 1345-1356.	1.5	55
45	Phytoplankton and sea ice algal biomass and physiology during the transition between winter and spring (McMurdo Sound, Antarctica). Polar Biology, 2010, 33, 1547-1556.	1.2	52
46	Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	55
47	Fine-scale spatial variability in anatoxin-a and homoanatoxin-a concentrations in benthic cyanobacterial mats: implication for monitoring and management. Journal of Applied Microbiology, 2010, 109, 2011-2018.	3.1	55
48	Hygrochastic capsule dehiscence in New Zealand alpine <i>Veronica</i> (Plantaginaceae). American Journal of Botany, 2010, 97, 1413-1423.	1.7	10
49	Proteorhodopsin-Bearing Bacteria in Antarctic Sea Ice. Applied and Environmental Microbiology, 2010, 76, 5918-5925.	3.1	71
50	Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon, 2010, 55, 897-903.	1.6	88
51	Low Salinity and High-Level UV-B Radiation Reduce Single-Cell Activity in Antarctic Sea Ice Bacteria. Applied and Environmental Microbiology, 2009, 75, 7570-7573.	3.1	21
52	Historical ozone concentrations and flavonoid levels in herbarium specimens of the Antarctic moss <i>Bryum argenteum</i> . Global Change Biology, 2009, 15, 1694-1702.	9.5	34
53	THE SHORTâ€TERM EFFECT OF IRRADIANCE ON THE PHOTOSYNTHETIC PROPERTIES OF ANTARCTIC FASTâ€ICE MICROALGAL COMMUNITIES ¹ . Journal of Phycology, 2009, 45, 1290-1298.	2.3	20
54	Flavonoid profiles in the Heliohebe group of New Zealand Veronica (Plantaginaceae). Biochemical Systematics and Ecology, 2008, 36, 110-116.	1.3	15

#	Article	IF	CITATIONS
55	High single-cell metabolic activity in Antarctic sea ice bacteria. Aquatic Microbial Ecology, 2008, 52, 25-31.	1.8	14
56	Melting out of sea ice causes greater photosynthetic stress in algae than freezing in ¹ . Journal of Phycology, 2007, 43, 948-956.	2.3	66
57	Spring sea ice photosynthesis, primary productivity and biomass distribution in eastern Antarctica, 2002–2004. Marine Biology, 2007, 151, 985-995.	1.5	57
58	Comparison of the microalgal community within fast ice at two sites along the Ross Sea coast, Antarctica. Antarctic Science, 2006, 18, 583-594.	0.9	38
59	SHORT-TERM EFFECT OF TEMPERATURE ON THE PHOTOKINETICS OF MICROALGAE FROM THE SURFACE LAYERS OF ANTARCTIC PACK ICE1. Journal of Phycology, 2005, 41, 763-769.	2.3	68
60	The effects of UVB radiation on temperate southern hemisphere forests. Environmental Pollution, 2005, 137, 415-427.	7.5	18
61	Red Clover <i>Trifolium pratense </i> L. Phytoestrogens:  UV-B Radiation Increases Isoflavone Yield, and Postharvest Drying Methods Change the Glucoside Conjugate Profiles. Journal of Agricultural and Food Chemistry, 2005, 53, 8273-8278.	5.2	22
62	Acclimation of Antarctic bottom-ice algal communities to lowered salinities during melting. Polar Biology, 2004, 27, 679-686.	1.2	59
63	Karenia concordia sp. nov. (Gymnodiniales, Dinophyceae), a new nonthecate dinoflagellate isolated from the New Zealand northeast coast during the 2002 harmful algal bloom events. Phycologia, 2004, 43, 552-562.	1.4	27
64	Diurnal changes in photosynthesis of Antarctic fast ice algal communities determined by pulse amplitude modulation fluorometry. Marine Biology, 2003, 143, 359-367.	1.5	55
65	Responses to UV-B radiation in Trifolium repens L physiological links to plant productivity and water availability. Plant, Cell and Environment, 2003, 26, 603-612.	5.7	114
66	Mycosporine-Like Amino Acids in Antarctic Sea Ice Algae, and Their Response to UVB Radiation. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 471-477.	1.4	40
67	Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry, 2002, 59, 23-32.	2.9	250
68	Cytoplasmic accumulation of flavonoids in flower petals and its relevance to yellow flower colouration. Phytochemistry, 2001, 58, 403-413.	2.9	52
69	Flavonoids and UV Photoprotection in Arabidopsis Mutants. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2001, 56, 745-754.	1.4	112
70	Cell wall sited flavonoids in lisianthus flower petals. Phytochemistry, 2000, 54, 681-687.	2.9	61
71	Responses of Nine Trifolium repens L. Populations to Ultraviolet-B Radiation: Differential Flavonol Glycoside Accumulation and Biomass Production. Annals of Botany, 2000, 86, 527-537.	2.9	110
72	In situ net primary productivity of an Antarctic fast ice bottom algal community. Aquatic Microbial Ecology, 2000, 21, 177-185.	1.8	86

#	Article	IF	CITATIONS
73	UVB Radiation Induced Increase in Quercetin: Kaempferol Ratio in Wildâ€Type and Transgenic Lines of Petunia. Photochemistry and Photobiology, 1998, 68, 323-330.	2.5	51
74	An increase in the luteolin : Apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry, 1998, 48, 791-794.	2.9	146
75	UVB Radiation Induced Increase in Quercetin:Kaempferol Ratio in Wild-Type and Transgenic Lines of Petunia. Photochemistry and Photobiology, 1998, 68, 323.	2.5	87
76	A Small-Scale Outdoor Plant Growth Chamber with Modulated Enhancement of Solar UV-B Radiation. Journal of Environmental Quality, 1997, 26, 866-871.	2.0	11
77	Erythemal Ultraviolet Insolation in New Zealand at Solar Zenith Angles of 30° and 45°. Photochemistry and Photobiology, 1996, 63, 628-632.	2.5	8
78	Vascular Development and Sap Flow in Apple Pedicels. Annals of Botany, 1994, 74, 381-388.	2.9	57
79	SEASONAL TRENDS IN ERYTHEMAL and CARCINOGENIC ULTRAVIOLET RADIATION AT MID-SOUTHERN LATITUDES1989–1991. Photochemistry and Photobiology, 1993, 57, 513-517.	2.5	13
80	THE EFFECT OF CHANGES OR DIFFERENCES IN ROBERTSON-BERGER RADIOMETER RESPONSIVITY ON SOLAR ULTRAVIOLET-B MEASUREMENT. Photochemistry and Photobiology, 1993, 58, 512-514.	2.5	9
81	UV radiation and photosynthetic production in Antarctic sea ice microalgae. Journal of Photochemistry and Photobiology B: Biology, 1992, 13, 235-240.	3.8	29
82	A critical comparison ofGracilaria chilensis andG. sordida (Rhodophyta, Gracilariales). Journal of Applied Phycology, 1990, 2, 375-382.	2.8	34
83	A comparison of relative lignin concentration as determined by interference microscopy and bromination/EDXA. Wood Science and Technology, 1987, 21, 303-309.	3.2	21
84	Further Evidence of Apoplastic Unloading into the Stem of Bean: Identification of the Phloem Buffering Pool. Journal of Experimental Botany, 1984, 35, 1744-1753.	4.8	43
85	Membranes in the spindle of Iris pollen mother cells during the second division of meiosis. Protoplasma, 1984, 122, 56-67.	2.1	12
86	Specimen holder design for Xâ€ray microanalysis of thin films in the TEM: reduction of spurious Xâ€rays. Journal of Microscopy, 1984, 134, 281-289.	1.8	3
87	Prometaphase and anaphase chromosome movements in living pollen mother cells. Protoplasma, 1983, 116, 24-33.	2.1	9