
Marco Zanetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/993026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable mechanochemical synthesis of β-cyclodextrin polymers by twin screw extrusion. Environmental Science and Pollution Research, 2022, 29, 251-263.	2.7	15
2	Investigation of the key parameters for gas sensing through comparison of electrospun and sol-gel semiconducting oxides. Ceramics International, 2022, 48, 20948-20960.	2.3	7
3	NADES-derived beta cyclodextrin-based polymers as sustainable precursors to produce sub-micrometric cross-linked mats and fibrous carbons. Polymer Degradation and Stability, 2022, 202, 110040.	2.7	3
4	Functional Dyes in Polymeric 3D Printing: Applications and Perspectives. , 2021, 3, 1-17.		58
5	Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers, 2021, 13, 977.	2.0	12
6	Low density polyethylene degradation by filamentous fungi. Environmental Pollution, 2021, 274, 116548.	3.7	52
7	Preparation and Carbonization of Glucose and Pyromellitic Dianhydride Crosslinked Polymers. Journal of Carbon Research, 2021, 7, 56.	1.4	0
8	Mechanosynthesis of β-Cyclodextrin Polymers Based on Natural Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 14881-14889.	3.2	13
9	Sustainable production of curable maltodextrin-based electrospun microfibers. RSC Advances, 2021, 12, 762-771.	1.7	4
10	Thermosetting Polyurethane Resins as Low-Cost, Easily Scalable, and Effective Oxygen and Moisture Barriers for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 54862-54875.	4.0	30
11	Preparation of Microspheres and Monolithic Microporous Carbons from the Pyrolysis of Template-Free Hyper-Crosslinked Oligosaccharides Polymer. Molecules, 2020, 25, 3034.	1.7	4
12	Sustainable synthesis of cyclodextrin-based polymers by exploiting natural deep eutectic solvents. Green Chemistry, 2020, 22, 5806-5814.	4.6	29
13	Piezoresistive and mechanical Behavior of CNT based polyurethane foam. Journal of Composites Science, 2020, 4, 131.	1.4	7
14	All-Carbon Conductors for Electronic and Electrical Wiring Applications. Frontiers in Materials, 2020, 7, .	1.2	30
15	New Poly(β-Cyclodextrin)/Poly(Vinyl Alcohol) Electrospun Sub-Micrometric Fibers and Their Potential Application for Wastewater Treatments. Nanomaterials, 2020, 10, 482.	1.9	13
16	Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers. Beilstein Journal of Organic Chemistry, 2020, 16, 1554-1563.	1.3	28
17	Enhancement of the Adhesive Properties by Optimizing the Water Content in PNIPAM-Functionalized Complex Coacervates. ACS Applied Polymer Materials, 2020, 2, 1722-1730.	2.0	23
18	Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics, 2019, 11, 545.	2.0	56

Marco Zanetti

#	Article	IF	CITATIONS
19	Thiol–yne chemistry for 3D printing: exploiting an off-stoichiometric route for selective functionalization of 3D objects. Polymer Chemistry, 2019, 10, 5950-5958.	1.9	37
20	Cyclodextrins and Cyclodextrin Derivatives as Green Char Promoters in Flame Retardants Formulations for Polymeric Materials. A Review. Polymers, 2019, 11, 664.	2.0	28
21	Microfibers of microporous carbon obtained from the pyrolysis of electrospun β-cyclodextrin/pyromellitic dianhydride nanosponges. Polymer Degradation and Stability, 2019, 161, 277-282.	2.7	13
22	In Situ Synthesis of MIL-100(Fe) at the Surface of Fe3O4@AC as Highly Efficient Dye Adsorbing Nanocomposite. International Journal of Molecular Sciences, 2019, 20, 5612.	1.8	33
23	Oneâ€step facile process to obtain insoluble polysaccharides fibrous mats from electrospinning of waterâ€soluble PMDA/cyclodextrin polymer. Journal of Applied Polymer Science, 2018, 135, 46490.	1.3	9
24	Combined Influence of Gelatin Fibre Topography and Growth Factors on Cultured Dorsal Root Ganglia Neurons. Anatomical Record, 2018, 301, 1668-1677.	0.8	7
25	<i>In vitro</i> evaluation of gelatin and chitosan electrospun fibres as an artificial guide in peripheral nerve repair: a comparative study. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e679-e694.	1.3	17
26	3d printing technologies: are their materials safe for conservation treatments?. IOP Conference Series: Materials Science and Engineering, 2018, 364, 012029.	0.3	5
27	Controlled Release of DEET Loaded on Fibrous Mats from Electrospun PMDA/Cyclodextrin Polymer. Molecules, 2018, 23, 1694.	1.7	19
28	Sustainable N-containing biochars obtained at low temperatures as sorbing materials for environmental application: Municipal biowaste-derived substances and nanosponges case studies. Journal of Analytical and Applied Pyrolysis, 2018, 134, 606-613.	2.6	13
29	Dual confinement of sulphur with rGO-wrapped microporous carbon from β-cyclodextrin nanosponges as a cathode material for Li–S batteries. Journal of Solid State Electrochemistry, 2017, 21, 3411-3420.	1.2	15
30	Preparation and characterization of microporous carbon spheres from high amylose pea maltodextrin. RSC Advances, 2017, 7, 36117-36123.	1.7	21
31	Evolution of Cyclodextrin Nanosponges. International Journal of Pharmaceutics, 2017, 531, 470-479.	2.6	131
32	Ultrasensitive Gas Sensors Based on Electrospun TiO2 and ZnO â€. Proceedings (mdpi), 2017, 1, 485.	0.2	1
33	Ultrasensitive Gas Sensors Based on Electrospun TiO2 and ZnO. Proceedings (mdpi), 2017, 1, .	0.2	2
34	Shedding light on precursor and thermal treatment effects on the nanostructure of electrospun TiO2 fibers. Nano Structures Nano Objects, 2016, 7, 49-55.	1.9	7
35	Micro porous carbon spheres from cyclodextrin nanosponges. Microporous and Mesoporous Materials, 2016, 235, 178-184.	2.2	32
36	Fire behavior of polyamide 12 nanocomposites containing POSS and CNT. Polymer Degradation and Stability, 2016, 134, 151-156.	2.7	13

Marco Zanetti

#	Article	IF	CITATIONS
37	Opposite role of different carbon fiber reinforcements on the non-isothermal crystallization behavior of poly(etheretherketone). Materials Chemistry and Physics, 2016, 179, 223-231.	2.0	28
38	Crosslinking and carbonization processes in PAN films and nanofibers. Polymer Degradation and Stability, 2016, 123, 178-188.	2.7	73
39	The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. International Journal of Molecular Sciences, 2015, 16, 12925-12942.	1.8	96
40	The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Materials Science and Engineering C, 2015, 48, 620-631.	3.8	65
41	Graphite nanoplatelets and carbon nanotubes based polyethylene composites: Electrical conductivity and morphology. Materials Chemistry and Physics, 2013, 143, 47-52.	2.0	35
42	In-vivo degradation of poly(carbonate-urethane) based spine implants. Polymer Degradation and Stability, 2013, 98, 1225-1235.	2.7	31
43	Crosslinked gelatin nanofibres: Preparation, characterisation and in vitro studies using glial-like cells. Materials Science and Engineering C, 2013, 33, 2723-2735.	3.8	67
44	Cyclodextrin-based nanosponges as drug carriers. Beilstein Journal of Organic Chemistry, 2012, 8, 2091-2099.	1.3	275
45	Thermoplastic polyurethanes with polycarbonate soft phase: Effect of thermal treatment on phase morphology. Polymer Degradation and Stability, 2012, 97, 1794-1800.	2.7	30
46	Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers. Journal of Molecular Catalysis A, 2012, 359, 42-48.	4.8	180
47	Influence of MWCNT morphology on dispersion and thermal properties of polyethylene nanocomposites. Polymer Degradation and Stability, 2010, 95, 756-762.	2.7	54
48	Pyrolysis of fire retardant anhydride-cured epoxy resins. Journal of Analytical and Applied Pyrolysis, 2010, 88, 39-52.	2.6	59
49	Degradable polyoctamethylene suberate/clay nanocomposites. Crystallization studies by DSC and simultaneous SAXS/WAXD synchrotron radiation. European Polymer Journal, 2009, 45, 398-409.	2.6	13
50	Preparation of polymeric hybrid nanocomposites based on PE and nanosilica. Polymer, 2009, 50, 2595-2600.	1.8	87
51	Micro-FTIR and Micro-Raman Studies of a Carbon Film Prepared from Furfuryl Alcohol Polymerization. Journal of Physical Chemistry B, 2009, 113, 10571-10574.	1.2	56
52	Gas Chromatography Study of Reagent Degradation During Chemical Vapor Deposition of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 3593-3598.	0.9	6
53	Study of clay nanocomposites of the biodegradable polyhexamethylene succinate. Application of isoconversional analysis to nonisothermal crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2234-2248.	2.4	15
54	Thermal decomposition of fire retardant brominated epoxy resins cured with different nitrogen containing hardeners. Polymer Degradation and Stability, 2007, 92, 1088-1100.	2.7	88

MARCO ZANETTI

#	Article	IF	CITATIONS
55	Lifetime of alkyl macroradicals in irradiated ultra-high molecular weight polyethylene. Polymer Degradation and Stability, 2007, 92, 1498-1503.	2.7	30
56	Stabilisation of ultra-high molecular weight polyethylene with Vitamin E. Polymer Degradation and Stability, 2007, 92, 2155-2162.	2.7	116
57	Oxidation behaviour in prosthetic UHMWPE components sterilised with high-energy radiation in the presence of oxygen. Polymer Degradation and Stability, 2006, 91, 3057-3064.	2.7	49
58	Polystyrene Microspheres and Nanospheres Produced by Electrospray. Macromolecular Rapid Communications, 2006, 27, 2038-2042.	2.0	77
59	Flammability and thermal stability of polymer/layered silicate nanocomposites. , 2006, , 256-272.		19
60	WEEE recycling: Pyrolysis of fire retardant model polymers. Waste Management, 2005, 25, 203-208.	3.7	31
61	Radiation-induced crosslinking of UHMWPE in the presence of co-agents: chemical and mechanical characterisation. Polymer, 2005, 46, 10648-10657.	1.8	76
62	PVC and PVC-VAc Nanocomposites: Negative Effects on Thermal Stability. ACS Symposium Series, 2005, , 75-88.	0.5	0
63	Thermal degradation behaviour of PE/clay nanocomposites. Polymer Degradation and Stability, 2004, 85, 657-665.	2.7	175
64	Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polymer, 2004, 45, 4367-4373.	1.8	158
65	Cone Calorimeter Combustion and Gasification Studies of Polymer Layered Silicate Nanocomposites. Chemistry of Materials, 2002, 14, 881-887.	3.2	405
66	Fire Retardant Halogenâ^'Antimonyâ^'Clay Synergism in Polypropylene Layered Silicate Nanocompositesâ€. Chemistry of Materials, 2002, 14, 189-193.	3.2	243
67	Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposites. Polymer Degradation and Stability, 2002, 77, 299-304.	2.7	134
68	Synthesis and thermal behaviour of layered silicate–EVA nanocomposites. Polymer, 2001, 42, 4501-4507.	1.8	449
69	Combustion behaviour of EVA/fluorohectorite nanocomposites. Polymer Degradation and Stability, 2001, 74, 413-417.	2.7	144
70	Thermal Behaviour of Poly(propylene) Layered Silicate Nanocomposites. Macromolecular Rapid Communications, 2001, 22, 176-180.	2.0	350
71	Polymer layered silicate nanocomposites. Macromolecular Materials and Engineering, 2000, 279, 1-9.	1.7	453
72	The influence of shear forces on clay modification with oppositely charged polyelectrolytes. Macromolecular Materials and Engineering, 2000, 279, 10-18.	1.7	5

#	Article	IF	CITATIONS
73	Thermal degradation of cyclodextrins. Polymer Degradation and Stability, 2000, 69, 373-379.	2.7	133
74	The Haloform Reaction in the Presence of Cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 37, 83-92.	1.6	8
75	Polyurethanes as low cost and efficient encapsulants for Perovskite Solar Cells. , 0, , .		Ο