Sreenivasulu Balija

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9929816/publications.pdf

Version: 2024-02-01

430874 501196 43 823 18 28 citations g-index h-index papers 43 43 43 307 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Effect of the Structure of Trialkyl Phosphates on their Physicochemical Properties and Extraction Behavior. Solvent Extraction and Ion Exchange, 2009, 27, 258-294.	2.0	90
2	Parameters Influencing Thirdâ€Phase Formation in the Extraction of Th(NO ₃) ₄ by some Trialkyl Phosphates. Solvent Extraction and Ion Exchange, 2009, 27, 132-158.	2.0	70
3	A new procedure for the spectrophotometric determination of uranium(VI) in the presence of a large excess of thorium(IV). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 341-347.	3.9	54
4	STUDIES ON U-Th SEPARATION USING TRI-sec-BUTYL PHOSPHATE. Solvent Extraction and Ion Exchange, 1995, 13, 415-430.	2.0	53
5	Complexation Behavior of the Tri- <i>n</i> -butyl Phosphate Ligand with Pu(IV) and Zr(IV): A Computational Study. Journal of Physical Chemistry A, 2016, 120, 4201-4210.	2.5	39
6	Assorted functionality-appended UiO-66-NH ₂ for highly efficient uranium(<scp>vi</scp>) sorption at acidic/neutral/basic pH. RSC Advances, 2020, 10, 14650-14661.	3.6	34
7	Third Phase Formation in the Extraction of Th(NO ₃) ₄ by Tri- <i>n</i> -Butyl Phosphate and Tri- <i>iso</i> -Amyl Phosphate in <i>n</i> -Dodecane and <i>n</i> -Tetradecane from Nitric Acid Media. Solvent Extraction and Ion Exchange, 2014, 32, 249-266.	2.0	25
8	THIRD PHASE FORMATION IN EXTRACTION OF THORIUM NITRATE BY MIXTURES OF TRIALKYL PHOSPHATES. Solvent Extraction and Ion Exchange, 1998, 16, 1001-1011.	2.0	23
9	THIRD PHASE FORMATION IN THE EXTRACTION OF Nd(III) BY OCTYL(PHENYL)-N,N-DHSOBUTYL CARBAMOYL METHYL PHOSPHINE OXIDE (OΦCMPO). Solvent Extraction and Ion Exchange, 1999, 17, 73-86.	2.0	23
10	Extraction of nitric acid by some trialkyl phosphates. Journal of Radioanalytical and Nuclear Chemistry, 1997, 222, 231-234.	1.5	22
11	Studies on the Extraction Behavior of Octyl(Phenyl)â€N,Nâ€Diisobutylcarbamoylmethylphosphine Oxide in Polymeric Adsorbent Resins. Solvent Extraction and Ion Exchange, 2003, 21, 449-463.	2.0	21
12	Tricyclohexylphosphate—A Unique Member in the Neutral Organophosphate Family. Solvent Extraction and Ion Exchange, 2003, 21, 221-238.	2.0	20
13	U/Th Separation by Counterâ€Current Liquid–Liquid Extraction with Triâ€secButyl Phosphate by Using an Ejector Mixer–Settler. Separation Science and Technology, 2005, 39, 2477-2496.	2.5	20
14	Extraction and stripping behaviour of tri- <i>i>iso</i> -amyl phosphate and tri- <i>n</i> -butyl phosphate in <i>n</i> -dodecane with U(VI) in nitric acid media. Radiochimica Acta, 2014, 102, 619-628.	1.2	20
15	Mixer-settler runs for the evaluation of tri- <i>iso</i> -amyl phosphate (TiAP) as an alternate extractant to tri- <i>n</i> -butyl phosphate (TBP) for reprocessing applications. Radiochimica Acta, 2015, 103, 101-108.	1.2	20
16	Physicochemical properties and radiolytic degradation studies on tri-iso-amyl phosphate (TiAP). Radiochimica Acta, 2017, 105, 249-261.	1.2	20
17	METAL-SOLVATE STOICHIOMETRY EVALUATION IN EXTRACTIONS BY SOLVATING TYPE NEUTRAL EXTRACTANTS-A NOVEL APPROACH. Solvent Extraction and Ion Exchange, 1996, 14, 443-458.	2.0	18
18	Comparative Studies on Third-Phase Formation in the Extraction of Thorium Nitrate by Tri- <i>n</i> -Butyl Phosphate and Tri- <i>n</i> -Amyl Phosphate in Straight Chain Alkane Diluents. Solvent Extraction and Ion Exchange, 2010, 28, 459-481.	2.0	18

#	Article	IF	CITATIONS
19	Separation of U(VI) and Pu(IV) from Am(III) and Trivalent Lanthanides with Tri-iso-amyl Phosphate (TiAP) as the Extractant by Using an Ejector Mixer-Settler. Solvent Extraction and Ion Exchange, 2015, 33, 120-133.	2.0	18
20	Extraction and third phase formation behaviour of tri-iso-amyl phosphate and tri-n-butyl phosphate with Zr(IV) and Hf(IV): A comparative study. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309, 1037-1048.	1.5	18
21	Post synthetically modified IRMOF-3 for efficient recovery and selective sensing of U(<scp>vi</scp>) from aqueous medium. RSC Advances, 2021, 11, 28126-28137.	3.6	18
22	An insight into third-phase formation in the extraction of thorium nitrate by tris(2-methylbutyl) phosphate and tri- <i>n</i> -alkyl phosphates. Separation Science and Technology, 2019, 54, 970-984.	2.5	17
23	Solvent extraction studies with some fission product elements from nitric acid media employing tri-iso-amyl phosphate and tri-n-butyl phosphate as extractants. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 2165.	1.5	16
24	Trends in small angle neutron scattering of actinide–trialkyl phosphate complexes: a molecular insight into third phase formation. RSC Advances, 2016, 6, 92905-92916.	3. 6	16
25	Dissolution and characterisation studies on U–Zr and U–Pu–Zr alloys in nitric acid medium. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 789-800.	1.5	15
26	Extraction Behaviour of Tris(2-methylbutyl) Phosphate with Fission Products and Heavy Metal Ions. Solvent Extraction and Ion Exchange, 2020, 38, 304-317.	2.0	12
27	Highly efficient functionalized MOF-LIC-1 for extraction of U(<scp>vi</scp>) and Th(<scp>iv</scp>) from aqueous solution: experimental and theoretical studies. Dalton Transactions, 2022, 51, 3557-3571.	3.3	12
28	Studies on Third Phase Formation in the Extraction of Th(NO ₃) ₄ by Tri- <i>i>i>o</i> -amyl Phosphate in <i>n</i> -alkane Diluents. Separation Science and Technology, 2013, 48, 2761-2770.	2.5	11
29	Effects of temperature on the extraction of U(VI) and Pu(IV) by tris(2-methylbutyl) phosphate from nitric acid media. Radiochimica Acta, 2018, 106, 281-289.	1.2	11
30	Compositional Characterization of Organic Phases after the Phase Splitting in the Extraction of $Th(NO < sub > 3 < sub > 4 < sub > by 1.1 M Tri-n < i>-butyl phosphate n < i>-Alkane. Solvent Extraction and Ion Exchange, 2014, 32, 703-719.$	2.0	10
31	Studies Related to the Processing of U–Zr and U–Pu–Zr Metallic Fuels Using Tri-iso-amyl Phosphate (TiAP) as Extractant. Solvent Extraction and Ion Exchange, 2016, 34, 422-438.	2.0	10
32	Third phase formation in the extraction of Th(NO ₃) ₄ by Tri-sec-butyl phosphate: a comparison with Tri- <i>n</i> -butyl phosphate. Radiochimica Acta, 2017, 105, 321-328.	1.2	9
33	Effect of gamma irradiation on thermal decomposition of tri-iso-amyl phosphate–nitric acid biphasic systems. Journal of Thermal Analysis and Calorimetry, 2016, 125, 483-495.	3.6	6
34	Comparision in the solvent extraction behavior of uranium (VI) in some trialkyl phosphates in ionic liquid. Radiochimica Acta, 2016, 104, 865-872.	1.2	6
35	Influence of Branching on the Conformational Space: Case Study of Tri- <i>sec</i> butyl Phosphate Using Matrix Isolation Infrared Spectroscopy and <i>DFT</i> Computations. Journal of Physical Chemistry A, 2018, 122, 8229-8242.	2.5	5
36	Empirical equations for the prediction of third phase formation limits in the extraction of thorium nitrate by tri-iso-amyl phosphate (TiAP). Journal of Radioanalytical and Nuclear Chemistry, 2015, 306, 489-495.	1.5	4

#	Article	IF	Citations
37	Separation of U(VI) and Th(IV) from Nd(III) by Cross-Current Solvent Extraction Mode Using Tri-iso-amyl Phosphate as the Extractant. Solvent Extraction and Ion Exchange, 2015, 33, 448-461.	2.0	4
38	Experimental and theoretical studies on solvent extraction of uranium(VI) with hexapropyl and hexabutyl phosphoramide extractants. Solvent Extraction and Ion Exchange, 2022, 40, 312-332.	2.0	4
39	Third phase formation in the extraction of nitric acid and metal ions by octyl(phenyl)- $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ diisobutyl carbamoyl methyl phosphine oxide (OÎ CMPO) based solvents. Desalination and Water Treatment, 2011, 25, 216-225.	1.0	3
40	Demonstration of Aqueous Reprocessing of U-Zr and U-Pu-Zr Metallic Alloy Fuels Using an Ejector Mixer-settler with Tri-n-Butyl Phosphate (TBP) as the Extractant. Solvent Extraction and Ion Exchange, 2021, 39, 271-289.	2.0	3
41	Extraction behavior of Pu(IV), Th(IV), and fission product elements with hexapropyl and hexabutyl phosphoramides. Radiochimica Acta, 2021, 109, 419-430.	1.2	3
42	Mixer-settler runs with tri-iso-amyl phosphate and tri-n-butyl phosphate for the aqueous reprocessing of U–Zr alloy fuels. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330, 1207.	1.5	1
43	Oxidation and dissolution behavior of UZr alloys for aqueous reprocessing applications. Progress in Nuclear Energy, 2022, 144, 104087.	2.9	1