Zhi-Jian Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/99296/publications.pdf Version: 2024-02-01

ΖΗΙ-ΙΙΛΝ CHEN

#	Article	IF	CITATIONS
1	Differential expressions and enzymatic properties of malate dehydrogenases in response to nutrient and metal stresses in Stylosanthes guianensis. Plant Physiology and Biochemistry, 2022, 170, 325-337.	5.8	16
2	Mechanism of manganese uptake and homeostasis in plant cell. , 2022, , 227-246.		0
3	Encapsulation of a Desmodium intortum Protein Isolate Pickering Emulsion of β-Carotene: Stability, Bioaccesibility and Cytotoxicity. Foods, 2022, 11, 936.	4.3	9
4	A phosphate starvation responsive malate dehydrogenase, GmMDH12 mediates malate synthesis and nodule size in soybean (Glycine max). Environmental and Experimental Botany, 2021, 189, 104560.	4.2	17
5	Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. BMC Plant Biology, 2021, 21, 466.	3.6	10
6	Characterization of Metal Tolerance Proteins and Functional Analysis of GmMTP8.1 Involved in Manganese Tolerance in Soybean. Frontiers in Plant Science, 2021, 12, 683813.	3.6	12
7	Physiological and transcriptomic analyses reveal the roles of secondary metabolism in the adaptive responses of Stylosanthes to manganese toxicity. BMC Genomics, 2020, 21, 861.	2.8	19
8	Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. BMC Plant Biology, 2020, 20, 85.	3.6	38
9	Advances in the Mechanisms of Plant Tolerance to Manganese Toxicity. International Journal of Molecular Sciences, 2019, 20, 5096.	4.1	111
10	Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity. BMC Plant Biology, 2019, 19, 212.	3.6	38
11	Improvement of plant regeneration and <i>Agrobacterium</i> -mediated genetic transformation of <i>Stylosanthes guianensis</i> . Tropical Grasslands - Forrajes Tropicales, 2019, 7, 480-492.	0.5	9
12	A rootâ€associated purple acid phosphatase, SgPAP23, mediates extracellular phytateâ€P utilization in <scp><i>Stylosanthes guianensis</i></scp> . Plant, Cell and Environment, 2018, 41, 2821-2834.	5.7	39
13	Genome-Wide Identification, Expression, and Functional Analysis of the Sugar Transporter Gene Family in Cassava (Manihot esculenta). International Journal of Molecular Sciences, 2018, 19, 987.	4.1	30
14	Alterations of growth, antioxidant system and gene expression in Stylosanthes guianensis during Colletotrichum gloeosporioides infection. Plant Physiology and Biochemistry, 2017, 118, 256-266.	5.8	15
15	Characterization of purple acid phosphatases involved in extracellular dNTP utilization in <i>Stylosanthes</i> . Journal of Experimental Botany, 2016, 67, 4141-4154.	4.8	72
16	Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. Journal of Proteomics, 2016, 143, 151-160.	2.4	51
17	Malate Synthesis and Secretion Mediated by a Manganese-Enhanced Malate Dehydrogenase Confers Superior Manganese Tolerance in <i>Stylosanthes guianensis</i> Â. Plant Physiology, 2014, 167, 176-188.	4.8	92
18	Phosphorus Fractions of Red Soils in Guangdong Province of South China and Their Bioavailability for Five Crop Species. Soil Science, 2014, 179, 514-521.	0.9	12

Zhi-Jian Chen

#	Article	IF	CITATIONS
19	Superior aluminium (Al) tolerance of <i>Stylosanthes</i> is achieved mainly by malate synthesis through an Alâ€enhanced malic enzyme, Sg <scp>ME</scp> 1. New Phytologist, 2014, 202, 209-219.	7.3	41
20	SPX1 is an important component in the phosphorus signalling network of common bean regulating root growth and phosphorus homeostasis. Journal of Experimental Botany, 2014, 65, 3299-3310.	4.8	57
21	Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics, 2011, 11, 4648-4659.	2.2	56