Ke Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9928474/publications.pdf

Version: 2024-02-01

34	1,119	19	33
papers	citations	h-index	g-index
34	34	34	549
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The detection of mutation within goat <i>cell division cycle 25 A</i> and its effect on kidding number. Animal Biotechnology, 2022, 33, 1504-1509.	1.5	1
2	Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus). Genomics, 2021, 113, 142-150.	2.9	28
3	Detection of 15-bp Deletion Mutation within PLAG1 Gene and Its Effects on Growth Traits in Goats. Animals, 2021, 11, 2064.	2.3	8
4	A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Molecular Plant, 2021, 14, 1088-1103.	8.3	33
5	Palliative effects of metformin on testicular damage induced by triptolide in male rats. Ecotoxicology and Environmental Safety, 2021, 222, 112536.	6.0	6
6	Detection of mRNA Expression and Copy Number Variations Within the Goat FecB Gene Associated With Litter Size. Frontiers in Veterinary Science, 2021, 8, 758705.	2.2	13
7	An upstream deletion polymorphism within the goat Period circadian regulator 1 (PER1) gene was associated with growth traits. Animal Biotechnology, 2021, , 1-6.	1.5	0
8	A deletion mutation within the <i>ATBF1</i> gene is strongly associated with goat litter size. Animal Biotechnology, 2020, 31, 174-180.	1.5	11
9	Detection of polled intersex syndrome (PIS) and its effect on phenotypic traits in goats. Animal Biotechnology, 2020, 31, 561-565.	1.5	3
10	Two indel variants of prolactin receptor (<i>PRLR</i>) gene are associated with growth traits in goat. Animal Biotechnology, 2020, 31, 314-323.	1.5	12
11	<i>TaDA1</i> , a conserved negative regulator of kernel size, has an additive effect with <i>TaGW2</i> in common wheat (<i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2020, 18, 1330-1342.	8.3	90
12	Goat sperm associated antigen 17 protein gene (SPAG17): Small and large fragment genetic variation detection, association analysis, and mRNA expression in gonads. Genomics, 2020, 112, 5115-5121.	2.9	16
13	Chlorpyrifos inhibits sperm maturation and induces a decrease in mouse male fertility. Environmental Research, 2020, 188, 109785.	7. 5	20
14	Goat DNMT3B: An indel mutation detection, association analysis with litter size and mRNA expression in gonads. Theriogenology, 2020, 147, 108-115.	2.1	46
15	Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology, 2020, 146, 20-25.	2.1	52
16	Two Insertion/Deletion Variants within SPAG17 Gene Are Associated with Goat Body Measurement Traits. Animals, 2019, 9, 379.	2.3	34
17	Interpretation of Fiber Supplementation on Offspring Testicular Development in a Pregnant Sow Model from a Proteomics Perspective. International Journal of Molecular Sciences, 2019, 20, 4549.	4.1	8
18	Detection of two insertion/deletions (indels) within the ADAMTS9 gene and their associations with growth traits in goat. Small Ruminant Research, 2019, 180, 9-14.	1.2	12

#	Article	IF	CITATIONS
19	Goat SPEF2: Expression profile, indel variants identification and association analysis with litter size. Theriogenology, 2019, 139, 147-155.	2.1	33
20	Goat membrane associated ring-CH-type finger $1\ (MARCH1)\ mRNA\ expression$ and association with litter size. Theriogenology, 2019, 128, 8-16.	2.1	47
21	Goat PDGFRB: unique mRNA expression profile in gonad and significant association between genetic variation and litter size. Royal Society Open Science, 2019, 6, 180805.	2.4	18
22	An 11-bp Indel Polymorphism within the CSN1S1 Gene Is Associated with Milk Performance and Body Measurement Traits in Chinese Goats. Animals, 2019, 9, 1114.	2.3	25
23	One 16â€bp insertion/deletion (indel) within the KDM6A gene revealing strong associations with growth traits in goat. Gene, 2019, 686, 16-20.	2.2	29
24	Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology, 2019, 125, 115-121.	2.1	77
25	Goat CTNNB1: mRNA expression profile of alternative splicing in testis and association analysis with litter size. Gene, 2018, 679, 297-304.	2.2	34
26	Goat Boule: Isoforms identification, mRNA expression in testis and functional study and promoter methylation profiles. Theriogenology, 2018, 116, 53-63.	2.1	5
27	Insertion/Deletion Within the KDM6A Gene Is Significantly Associated With Litter Size in Goat. Frontiers in Genetics, 2018, 9, 91.	2.3	112
28	A novel indel within goat casein alpha S1 gene is significantly associated with litter size. Gene, 2018, 671, 161-169.	2.2	48
29	A novel 12â€bp deletion within goat <i>LHX4</i> gene significantly affected litter size. Archives Animal Breeding, 2018, 61, 1-8.	1.4	9
30	Detection of insertion/deletions (indels) of the & Detection of insertion/deletions (indels) of the & Detection of insertion/deletions (indels) of the & Detection of insertion of insertion of the indigenous goat breeds. Archives Animal Breeding, 2018, 61, 311-319.	1.4	3
31	A novel 14â€bp duplicated deletion within goat <i>><scp>GHR</scp></i> gene is significantly associated with growth traits and litter size. Animal Genetics, 2017, 48, 499-500.	1.7	84
32	A novel 12â€bp indel polymorphism within the <i><scp>GDF</scp>9</i> gene is significantly associated with litter size and growth traits in goats. Animal Genetics, 2017, 48, 735-736.	1.7	75
33	Effects of Wheat Straw Incorporation on the Availability of Soil Nutrients and Enzyme Activities in Semiarid Areas. PLoS ONE, 2015, 10, e0120994.	2.5	101
34	Enhancement and conservation of inland fisheries resources in China. Environmental Biology of Fishes, 2012, 93, 531-545.	1.0	26