Dennie T Frederick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9927800/publications.pdf

Version: 2024-02-01

84 papers

15,099 citations

43 h-index 79 g-index

87 all docs

87 docs citations

87 times ranked

25493 citing authors

#	Article	IF	CITATIONS
1	Combined tumor and immune signals from genomes or transcriptomes predict outcomes of checkpoint inhibition in melanoma. Cell Reports Medicine, 2022, 3, 100500.	6.5	13
2	Benefit and toxicity of programmed death-1 blockade vary by ethnicity in patients with advanced melanoma: an international multicentre observational study. British Journal of Dermatology, 2022, 187, 401-410.	1.5	21
3	STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming. Nature Communications, 2022, 13, 1859.	12.8	21
4	Landscape of helper and regulatory antitumour CD4+ T cells in melanoma. Nature, 2022, 605, 532-538.	27.8	70
5	Glycoproteomics as a powerful liquid biopsy-based predictor of checkpoint inhibitor treatment benefit in metastatic malignant melanoma Journal of Clinical Oncology, 2022, 40, 9545-9545.	1.6	4
6	Microenvironmental Landscape of Human Melanoma Brain Metastases in Response to Immune Checkpoint Inhibition. Cancer Immunology Research, 2022, 10, 996-1012.	3.4	18
7	Abstract 1270: Glycoproteomics-based liquid biopsy informs optimal checkpoint-inhibitor drug choice. Cancer Research, 2022, 82, 1270-1270.	0.9	O
8	Abstract 3610: In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Cancer Research, 2022, 82, 3610-3610.	0.9	0
9	HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors. Nature Communications, 2022, 13, .	12.8	23
10	Adjuvant Radiation Therapy for Clinical Stage III Melanoma in the Modern Therapeutic Era. Annals of Surgical Oncology, 2021, 28, 3512-3521.	1.5	8
11	Epitope spreading toward wild-type melanocyte-lineage antigens rescues suboptimal immune checkpoint blockade responses. Science Translational Medicine, 2021, 13, .	12.4	54
12	Radiological dynamics and SITC-defined resistance types of advanced melanoma during anti-PD-1 monotherapy: an independent single-blind observational study on an international cohort., 2021, 9, e002092.		7
13	The use of cryoablation to overcome resistance to PD-1 blockade in unresectable melanoma Journal of Clinical Oncology, 2021, 39, 9538-9538.	1.6	1
14	Characterizing the tumor and immune landscape of melanoma patients treated with combined checkpoint blockade and MAPK targeted therapy Journal of Clinical Oncology, 2021, 39, 9522-9522.	1.6	1
15	Evolution of delayed resistance to immunotherapy in a melanoma responder. Nature Medicine, 2021, 27, 985-992.	30.7	67
16	Abstract 387: Glycoproteomics as a powerful liquid biopsy-based predictor of checkpoint-inhibitor treatment response. Cancer Research, 2021, 81, 387-387.	0.9	2
17	Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature, 2021, 596, 119-125.	27.8	239
18	Early Use of High-Dose Glucocorticoid for the Management of irAE Is Associated with Poorer Survival in Patients with Advanced Melanoma Treated with Anti–PD-1 Monotherapy. Clinical Cancer Research, 2021, 27, 5993-6000.	7.0	70

#	Article	IF	CITATIONS
19	Neural Crest-Like Stem Cell Transcriptome Analysis Identifies LPAR1 in Melanoma Progression and Therapy Resistance. Cancer Research, 2021, 81, 5230-5241.	0.9	9
20	Absolute quantification of tumor antigens using embedded MHC-I isotopologue calibrants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
21	Pathway signatures derived from on-treatment tumor specimens predict response to anti-PD1 blockade in metastatic melanoma. Nature Communications, 2021, 12, 6023.	12.8	21
22	Fitness Landscape of Clonal Hematopoiesis Under Selective Pressure of Immune Checkpoint Blockade. JCO Precision Oncology, 2020, 4, 1027-1033.	3.0	20
23	Plasma-derived extracellular vesicle analysis and deconvolution enable prediction and tracking of melanoma checkpoint blockade outcome. Science Advances, 2020, 6, .	10.3	37
24	Reversal of pre-existing NGFR-driven tumor and immune therapy resistance. Nature Communications, 2020, 11, 3946.	12.8	71
25	Targeting Extracellular Matrix Remodeling Restores BRAF Inhibitor Sensitivity in BRAFi-resistant Melanoma. Clinical Cancer Research, 2020, 26, 6039-6050.	7.0	24
26	Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nature Medicine, 2020, 26, 1114-1124.	30.7	216
27	SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Molecular Cancer Research, 2020, 18, 1560-1573.	3.4	13
28	Changes in Aged Fibroblast Lipid Metabolism Induce Age-Dependent Melanoma Cell Resistance to Targeted Therapy via the Fatty Acid Transporter FATP2. Cancer Discovery, 2020, 10, 1282-1295.	9.4	75
29	Targeting the cyclin-dependent kinase 5 in metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8001-8012.	7.1	21
30	Heterogeneous response and irAE patterns in advanced melanoma patients treated with anti-PD-1 monotherapy from different ethnic groups: Subtype distribution discrepancy and beyond Journal of Clinical Oncology, 2020, 38, 10020-10020.	1.6	2
31	Investigating the tumor immune infiltrate for populations that predict immune-related adverse events (irAEs) in patients receiving PD-1 inhibitors Journal of Clinical Oncology, 2020, 38, 3116-3116.	1.6	0
32	The use of plasma proteomic markers to understand the biology of immunotherapy response Journal of Clinical Oncology, 2020, 38, 10062-10062.	1.6	0
33	Correlation between immune-related adverse events and outcomes in nivolumab/ipilimumab combination therapy for metastatic melanoma Journal of Clinical Oncology, 2020, 38, 58-58.	1.6	1
34	A Fatty Acid Oxidation-dependent Metabolic Shift Regulates the Adaptation of <i>BRAF</i> mutated Melanoma to MAPK Inhibitors. Clinical Cancer Research, 2019, 25, 6852-6867.	7.0	74
35	Adaptive Resistance to Dual BRAF/MEK Inhibition in BRAF-Driven Tumors through Autocrine FGFR Pathway Activation. Clinical Cancer Research, 2019, 25, 7202-7217.	7.0	29
36	Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy. Immunity, 2019, 50, 1498-1512.e5.	14.3	406

#	Article	IF	CITATIONS
37	Autoimmune genetic risk variants as germline biomarkers of response to melanoma immune-checkpoint inhibition. Cancer Immunology, Immunotherapy, 2019, 68, 897-905.	4.2	38
38	Genomeâ€wide prediction of synthetic rescue mediators of resistance to targeted and immunotherapy. Molecular Systems Biology, 2019, 15, e8323.	7.2	25
39	Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5â^'/â^' mice. Nature Communications, 2019, 10, 1492.	12.8	114
40	ER Translocation of the MAPK Pathway Drives Therapy Resistance in BRAF-Mutant Melanoma. Cancer Discovery, 2019, 9, 396-415.	9.4	71
41	Predictable early onset high-dose-glucocorticoid-associated-irAE and its predictive role in anti-PD-1 monotherapy treated advanced melanoma patients Journal of Clinical Oncology, 2019, 37, 9544-9544.	1.6	2
42	Liquid biopsy using plasma proteomic profiling to reveal predictors of immunotherapy response Journal of Clinical Oncology, 2019, 37, 130-130.	1.6	1
43	Organ site-specific radiological responses in anti-PD-1 monotherapy treated advanced melanoma patients Journal of Clinical Oncology, 2019, 37, 9552-9552.	1.6	0
44	Coâ€targeting <scp>BET</scp> and <scp>MEK</scp> as salvage therapy for <scp>MAPK</scp> and checkpoint inhibitorâ€resistant melanoma. EMBO Molecular Medicine, 2018, 10, .	6.9	79
45	A phase II study of combined therapy with a BRAF inhibitor (vemurafenib) and interleukin-2 (aldesleukin) in patients with metastatic melanoma. Oncolmmunology, 2018, 7, e1423172.	4.6	25
46	Induction of Telomere Dysfunction Prolongs Disease Control of Therapy-Resistant Melanoma. Clinical Cancer Research, 2018, 24, 4771-4784.	7.0	29
47	A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell, 2018, 175, 984-997.e24.	28.9	892
48	Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell, 2018, 175, 998-1013.e20.	28.9	1,260
49	Toward Minimal Residual Disease-Directed Therapy in Melanoma. Cell, 2018, 174, 843-855.e19.	28.9	514
50	Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nature Medicine, 2018, 24, 1545-1549.	30.7	473
51	Feasibility of Ultra-High-Throughput Functional Screening of Melanoma Biopsies for Discovery of Novel Cancer Drug Combinations. Clinical Cancer Research, 2017, 23, 4680-4692.	7. O	8
52	An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. Journal of Experimental Medicine, 2017, 214, 1691-1710.	8.5	71
53	Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nature Communications, 2017, 8, 1136.	12.8	686
54	PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature, 2017, 550, 133-136.	27.8	146

#	Article	IF	Citations
55	Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357, 1156-1160.	12.6	1,059
56	Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Molecular Medicine, 2017, 9, 1011-1029.	6.9	63
57	Melanoma Therapeutic Strategies that Select against Resistance by Exploiting MYC-Driven Evolutionary Convergence. Cell Reports, 2017, 21, 2796-2812.	6.4	77
58	Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines. Cell Reports, 2017, 21, 1936-1952.	6.4	72
59	A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma. Cell Reports, 2017, 21, 1953-1967.	6.4	117
60	sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature, 2016, 532, 250-254.	27.8	290
61	Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 2016, 352, 189-196.	12.6	3,421
62	Targeted Next Generation Sequencing Identifies Markers of Response to PD-1 Blockade. Cancer Immunology Research, 2016, 4, 959-967.	3.4	428
63	Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma. Nature Medicine, 2016, 22, 1056-1061.	30.7	62
64	Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nature Communications, 2016, 7, 10582.	12.8	412
65	Reduced Proteolytic Shedding of Receptor Tyrosine Kinases Is a Post-Translational Mechanism of Kinase Inhibitor Resistance. Cancer Discovery, 2016, 6, 382-399.	9.4	139
66	Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell, 2016, 29, 270-284.	16.8	198
67	Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncolmmunology, 2016, 5, e1136044.	4.6	55
68	Genomic analysis and 3-y efficacy and safety update of COMBI-d: A phase 3 study of dabrafenib (D) + trametinib (T) vs D monotherapy in patients (pts) with unresectable or metastatic <i>BRAF</i> V600E/K-mutant cutaneous melanoma Journal of Clinical Oncology, 2016, 34, 9502-9502.	1.6	47
69	Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR. Nature Medicine, 2015, 21, 741-750.	30.7	107
70	Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Reports, 2015, 11, 1458-1473.	6.4	55
71	The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nature Genetics, 2015, 47, 250-256.	21.4	434
72	EPHA2 Is a Mediator of Vemurafenib Resistance and a Novel Therapeutic Target in Melanoma. Cancer Discovery, 2015, 5, 274-287.	9.4	107

#	Article	IF	CITATIONS
73	Melanocytic nevi excised during B-Raf proto-oncogene (BRAF) inhibitor therapy: A study of 19 lesions from 10 patients. Journal of the American Academy of Dermatology, 2015, 73, 491-499.e2.	1.2	14
74	MITF Modulates Therapeutic Resistance through EGFR Signaling. Journal of Investigative Dermatology, 2015, 135, 1863-1872.	0.7	76
75	BAP1 Has a Survival Role in Cutaneous Melanoma. Journal of Investigative Dermatology, 2015, 135, 1089-1097.	0.7	31
76	A phase II study of combined therapy with vemurafenib (vem) and high-dose interleukin-2 (aldesleukin;) Tj ETQq(0 0 rgBT 1.6	/Oyerlock 10
77	Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment. PLoS ONE, 2015, 10, e0140310.	2.5	39
78	One Hippo and many masters: differential regulation of the Hippo pathway in cancer. Biochemical Society Transactions, 2014, 42, 816-821.	3.4	12
79	Inhibition of mTORC1/2 Overcomes Resistance to MAPK Pathway Inhibitors Mediated by PGC1α and Oxidative Phosphorylation in Melanoma. Cancer Research, 2014, 74, 7037-7047.	0.9	161
80	The Immune Microenvironment Confers Resistance to MAPK Pathway Inhibitors through Macrophage-Derived TNFî±. Cancer Discovery, 2014, 4, 1214-1229.	9.4	174
81	Clinical Profiling of BCL-2 Family Members in the Setting of BRAF Inhibition Offers a Rationale for Targeting De Novo Resistance Using BH3 Mimetics. PLoS ONE, 2014, 9, e101286.	2.5	42
82	A Melanoma Cell State Distinction Influences Sensitivity to MAPK Pathway Inhibitors. Cancer Discovery, 2014, 4, 816-827.	9.4	448
83	BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in Patients with Metastatic Melanoma. Clinical Cancer Research, 2013, 19, 1225-1231.	7.0	832
84	Whole exome and whole transcriptome sequencing in melanoma patients to identify mechanisms of resistance to combined RAF/MEK inhibition Journal of Clinical Oncology, 2013, 31, 9015-9015.	1.6	3