Qian Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9926361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predictive biomarkers for <scp>5â€ALAâ€PDT</scp> can lead to personalized treatments and overcome tumorâ€specific resistances. Cancer Reports, 2022, 5, e1278.	1.4	14
2	Photodynamic Effects with 5-Aminolevulinic Acid on Cytokines and Exosomes in Human Peripheral Blood Mononuclear Cells. Biomedicines, 2022, 10, 232.	3.2	4
3	Amphiphilic Protoporphyrin IX Derivatives as New Photosensitizing Agents for the Improvement of Photodynamic Therapy. Biomedicines, 2022, 10, 423.	3.2	5
4	Evaluation of the PSMA-Binding Ligand 212Pb-NG001 in Multicellular Tumour Spheroid and Mouse Models of Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 4815.	4.1	19
5	Evaluation of In Vitro Phototoxicity of a Minibody-IR700 Conjugate Using Cell Monolayer and Multicellular Tumor Spheroid Models. Cancers, 2021, 13, 3356.	3.7	3
6	Application of Photodynamic Therapy with 5-Aminolevulinic Acid to Extracorporeal Photopheresis in the Treatment of Patients with Chronic Graft-versus-Host Disease: A First-in-Human Study. Pharmaceutics, 2021, 13, 1558.	4.5	7
7	Photosensitizer delivery by fibrin glue: potential for bypassing the blood-brain barrier. Lasers in Medical Science, 2020, 36, 1031-1038.	2.1	2
8	Photochemically-Induced Release of Lysosomal Sequestered Sunitinib: Obstacles for Therapeutic Efficacy. Cancers, 2020, 12, 417.	3.7	13
9	Selective Killing of Activated T Cells by 5-Aminolevulinic Acid Mediated Photodynamic Effect: Potential Improvement of Extracorporeal Photopheresis. Cancers, 2020, 12, 377.	3.7	9
10	Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT–tamoxifen hybrid therapy. Npj Breast Cancer, 2019, 5, 13.	5.2	78
11	Comparison between 8â€methoxypsoralen and 5â€aminolevulinic acid in killing T cells of photopheresis patients <i>ex vivo</i> . Lasers in Surgery and Medicine, 2018, 50, 469-475.	2.1	14
12	Protein 4.1R is Involved in the Transport of 5â€Aminolevulinic Acid by Interaction with GATs in MEF Cells. Photochemistry and Photobiology, 2018, 94, 173-178.	2.5	6
13	The Akt pathway in oncology therapy and beyond (Review). International Journal of Oncology, 2018, 53, 2319-2331.	3.3	156
14	Light-enhanced VEGF121/rGel: A tumor targeted modality with vascular and immune-mediated efficacy. Journal of Controlled Release, 2018, 288, 161-172.	9.9	19
15	Enhancing the effects of chemotherapy by combined macrophage-mediated photothermal therapy (PTT) and photochemical internalization (PCI). Lasers in Medical Science, 2018, 33, 1747-1755.	2.1	11
16	Development of a new highâ€affinity human antibody with antitumor activity against solid and blood malignancies. FASEB Journal, 2018, 32, 5063-5077.	0.5	7
17	Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats. Journal of Biomedical Optics, 2018, 23, 1.	2.6	6
18	Photodynamic therapy mediated immune therapy of brain tumors. Neuroimmunology and Neuroinflammation, 2018, 5, 27.	1.4	37

Qian Peng

#	Article	IF	CITATIONS
19	Photochemical internalization (PCI) of bleomycin is equally effective in two dissimilar leiomyosarcoma xenografts in athymic mice. Photodiagnosis and Photodynamic Therapy, 2017, 20, 95-106.	2.6	4
20	Photothermal Therapy Employing Gold Nanoparticle- Loaded Macrophages as Delivery Vehicles: Comparing the Efficiency of Nanoshells Versus Nanorods. Journal of Environmental Pathology, Toxicology and Oncology, 2017, 36, 229-235.	1.2	14
21	Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). International Journal of Oncology, 2016, 48, 869-885.	3.3	302
22	Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages:in vitrosquamous cell carcinoma study. Journal of Biomedical Optics, 2016, 21, 018004.	2.6	15
23	Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth. Oncotarget, 2016, 7, 75940-75953.	1.8	6
24	MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features. Oncotarget, 2016, 7, 40297-40313.	1.8	34
25	Studies of the photosensitizer disulfonated meso-tetraphenyl chlorin in an orthotopic rat bladder tumor model. Photodiagnosis and Photodynamic Therapy, 2015, 12, 58-66.	2.6	10
26	RecombinantLactobacillus plantaruminduces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells. Human Vaccines and Immunotherapeutics, 2015, 11, 2664-2673.	3.3	17
27	Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133–saporin by photochemical internalization — A minimally invasive cancer stem cell-targeting strategy. Journal of Controlled Release, 2015, 206, 37-48.	9.9	61
28	Photochemical activation of MH3-B1/rGel: a HER2-targeted treatment approach for ovarian cancer. Oncotarget, 2015, 6, 12436-12451.	1.8	20
29	Photochemical internalization augments tumor vascular cytotoxicity and specificity of VEGF121/rGel fusion toxin. Journal of Controlled Release, 2014, 180, 1-9.	9.9	26
30	Biodistribution of protoporphyrin IX in female genital erosive lichen planus after topical application of hexaminolevulinate. Photodiagnosis and Photodynamic Therapy, 2014, 11, 113-117.	2.6	3
31	Lamin A/C cleavage by caspase-6 activation is crucial for apoptotic induction by photodynamic therapy with hexaminolevulinate in human B-cell lymphoma cells. Cancer Letters, 2013, 339, 25-32.	7.2	23
32	Simultaneously targeting mitochondria and endoplasmic reticulum by photodynamic therapy induces apoptosis in human lymphoma cells. Photochemical and Photobiological Sciences, 2011, 10, 1773-1782.	2.9	33
33	Effects of cell cycle on the uptake of water soluble quantum dots by cells. Journal of Applied Physics, 2011, 110, .	2.5	5
34	Lasers in medicine. Reports on Progress in Physics, 2008, 71, 056701.	20.1	172
35	Involvement of both caspase-dependent and -independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 2031-2042.	4.9	53
36	Targeting PBR by Hexaminolevulinate-Mediated Photodynamic Therapy Induces Apoptosis through Translocation of Apoptosis-Inducing Factor in Human Leukemia Cells. Cancer Research, 2005, 65, 11051-11060.	0.9	76

Qian Peng

1

#	Article	IF	CITATIONS
37	Effects of Photodynamic Therapy on Tumor Stroma. Ultrastructural Pathology, 2004, 28, 333-340.	0.9	48
38	5â€Aminolevulinic Acidâ€Based Photodynamic Therapy: Principles and Experimental Research. Photochemistry and Photobiology, 1997, 65, 235-251.	2.5	567
39	5-Aminolevulinic acid-based photodynamic therapy. Cancer, 1997, 79, 2282-2308.	4.1	1,000
40	5â€Aminolevulinic acidâ€based photodynamic therapy. Cancer, 1997, 79, 2282-2308.	4.1	23
41	Correlation of Subcellular and Intratumoral Photosensitizer Localization with Ultrastructural Features After Photodynamic Therapy. Ultrastructural Pathology, 1996, 20, 109-129.	0.9	208

42 5-Aminolevulinic acid-based photodynamic therapy. , 0, .