Na Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9924401/publications.pdf

Version: 2024-02-01

1307594 1474206 9 538 7 9 citations g-index h-index papers 9 9 9 1167 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Yb- and Mn-Doped Lead-Free Double Perovskite Cs ₂ AgBiX ₆ (X = Cl [–] ,) Tj	ETQq1 1 0).784314 rg
2	Carbon-Coated Nickel Phosphide Nanosheets as Efficient Dual-Electrocatalyst for Overall Water Splitting. ACS Applied Materials & ACS Ap	8.0	113
3	Co ₇ Fe ₃ and Co ₇ Fe ₃ @SiO ₂ Nanospheres with Tunable Diameters for High-Performance Electromagnetic Wave Absorption. ACS Applied Materials & Diameters, 2017, 9, 21933-21941.	8.0	109
4	NiSe ₂ pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation. Journal of Materials Chemistry A, 2017, 5, 3981-3986.	10.3	67
5	Rational Construction of Uniform CoNi-Based Core-Shell Microspheres with Tunable Electromagnetic Wave Absorption Properties. Scientific Reports, 2018, 8, 3196.	3.3	31
6	Thickness-controllable coating of SiO2 on Co microspheres with tunable electromagnetic properties and enhanced oxidation resistance. RSC Advances, 2016, 6, 107653-107658.	3.6	11
7	Designing Co7Fe3@TiO2 Core–Shell Nanospheres for Electromagnetic Wave Absorption in S and C Bands. Electronic Materials Letters, 2020, 16, 413-423.	2.2	9
8	Constructing and optimizing core–shell structured Co@TiO2 as highly efficient electromagnetic wave absorber. Journal of Materials Science: Materials in Electronics, 2021, 32, 27636-27646.	2.2	5
9	Fabricating Fe3O4 and Fe3O4&Fe Flower-Like Microspheres for Electromagnetic Wave Absorbing in C and X Bands. Electronic Materials Letters, 2022, 18, 370-380.	2.2	3