Junxiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9923062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Applied Catalysis B: Environmental, 2017, 219, 693-704.	20.2	617
2	Oxygenâ€Containing Amorphous Cobalt Sulfide Porous Nanocubes as Highâ€Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium. Angewandte Chemie - International Edition, 2017, 56, 4858-4861.	13.8	460
3	N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy, 2018, 49, 393-402.	16.0	300
4	Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy and Environmental Science, 2020, 13, 2431-2440.	30.8	229
5	Density-Functional-Theory Calculation Analysis of Active Sites for Four-Electron Reduction of O ₂ on Fe/N-Doped Graphene. ACS Catalysis, 2014, 4, 4170-4177.	11.2	215
6	Fast Redox Kinetics in Biâ€Heteroatom Doped 3D Porous Carbon Nanosheets for Highâ€Performance Hybrid Potassiumâ€ion Battery Capacitors. Advanced Energy Materials, 2019, 9, 1901533.	19.5	186
7	An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 4948-4954.	10.3	184
8	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie - International Edition, 2021, 60, 9078-9085.	13.8	157
9	High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production. Journal of the American Chemical Society, 2022, 144, 7224-7235.	13.7	156
10	Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H ₂ evolution. Journal of Materials Chemistry A, 2018, 6, 15668-15674.	10.3	155
11	Ru-RuO2/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73â€V in an asymmetric-electrolyte electrolyzer. Nano Energy, 2019, 61, 576-583.	16.0	151
12	Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane. Angewandte Chemie - International Edition, 2018, 57, 13120-13124.	13.8	127
13	Reliable and General Route to Inverse Opal Structured Nanohybrids of Carbonâ€Confined Transition Metal Sulfides Quantum Dots for Highâ€Performance Sodium Storage. Advanced Energy Materials, 2018, 8, 1801452.	19.5	118
14	Oxygenâ€Containing Amorphous Cobalt Sulfide Porous Nanocubes as Highâ€Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium. Angewandte Chemie, 2017, 129, 4936-4939.	2.0	110
15	3D graphene network encapsulating SnO ₂ hollow spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 4535-4542.	10.3	109
16	Highly dispersed ultrasmall NiS ₂ nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale, 2019, 11, 4688-4695.	5.6	107
17	Moltenâ€Saltâ€Assisted Synthesis of Bismuth Nanosheets for Longâ€ŧerm Continuous Electrocatalytic Conversion of CO ₂ to Formate. Angewandte Chemie - International Edition, 2020, 59, 20112-20119.	13.8	100
18	Energy-efficient electrolytic hydrogen production assisted by coupling urea oxidation with a pH-gradient concentration cell. Chemical Communications, 2018, 54, 2603-2606.	4.1	99

JUNXIANG CHEN

#	Article	IF	CITATIONS
19	FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 1138-1148.	10.3	93
20	Heteroporous MoS ₂ /Ni ₃ S ₂ towards superior electrocatalytic overall urea splitting. Chemical Communications, 2018, 54, 5181-5184.	4.1	92
21	Controllable Increase of Boron Content in B-Pd Interstitial Nanoalloy To Boost the Oxygen Reduction Activity of Palladium. Chemistry of Materials, 2017, 29, 10060-10067.	6.7	83
22	Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers. Chemical Society Reviews, 2014, 43, 5372-5386.	38.1	82
23	Selfâ€Assembling of Conductive Interlayerâ€Expanded WS ₂ Nanosheets into 3D Hollow Hierarchical Microflower Bud Hybrids for Fast and Stable Sodium Storage. Advanced Functional Materials, 2020, 30, 1907677.	14.9	82
24	Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkaliâ€Acid Electrocatalytic Sulfion Recycling and H ₂ Generation. Angewandte Chemie - International Edition, 2021, 60, 21550-21557.	13.8	82
25	A self-supported Ni–Co perselenide nanorod array as a high-activity bifunctional electrode for a hydrogen-producing hydrazine fuel cell. Journal of Materials Chemistry A, 2018, 6, 17763-17770.	10.3	81
26	Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23460-23470.	10.3	79
27	Local Spinâ€State Tuning of Iron Singleâ€Atom Electrocatalyst by Sâ€Coordinated Doping for Kineticsâ€Boosted Ammonia Synthesis. Advanced Materials, 2022, 34, e2202240.	21.0	79
28	Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating. Nano Energy, 2014, 6, 10-18.	16.0	76
29	Modulating the Electrocatalytic Performance of Palladium with the Electronic Metal–Support Interaction: A Case Study on Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 6617-6626.	11.2	73
30	<i>In situ</i> formation of vanadium nitride quantum dots on N-doped carbon hollow spheres for superior lithium and sodium storage. Journal of Materials Chemistry A, 2019, 7, 9289-9296.	10.3	68
31	2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation. ACS Nano, 2021, 15, 12418-12428.	14.6	67
32	Energetic Span as a Rate-Determining Term for Electrocatalytic Volcanos. ACS Catalysis, 2018, 8, 10590-10598.	11.2	63
33	Combined lifestyle factors, all-cause mortality and cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. Journal of Epidemiology and Community Health, 2021, 75, jech-2020-214050.	3.7	60
34	Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO ₂ into formate. Chemical Science, 2020, 11, 3952-3958.	7.4	55
35	Layer-by-layer stacked nanohybrids of N,S-co-doped carbon film modified atomic MoS ₂ nanosheets for advanced sodium dual-ion batteries. Journal of Materials Chemistry A, 2019, 7, 24271-24280.	10.3	52
36	An Asymmetricâ€Electrolyte Znâ^'Air Battery with Ultrahigh Power Density and Energy Density. ChemElectroChem, 2018, 5, 589-592.	3.4	50

JUNXIANG CHEN

#	Article	IF	CITATIONS
37	Nâ€Doped Carbon Nanofibers with Interweaved Nanochannels for Highâ€Performance Sodiumâ€ion Storage. Small, 2019, 15, e1904054.	10.0	45
38	A General Self-Sacrifice Template Strategy to 3D Heteroatom-Doped Macroporous Carbon for High-Performance Potassium-Ion Hybrid Capacitors. Nano-Micro Letters, 2021, 13, 131.	27.0	40
39	Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. Nanoscale, 2017, 9, 14722-14729.	5.6	38
40	Electrocatalytic O ₂ Reduction on Pt: Multiple Roles of Oxygenated Adsorbates, Nature of Active Sites, and Origin of Overpotential. Journal of Physical Chemistry C, 2017, 121, 6209-6217.	3.1	35
41	Facile Sprayâ€Pyrolysis Synthesis of Yolk–Shell Earthâ€Abundant Elemental Nickel–Ironâ€Based Nanohybrid Electrocatalysts for Full Water Splitting. ChemSusChem, 2017, 10, 4756-4763.	6.8	31
42	2 D Hybrid of Ni‣DH Chips on Carbon Nanosheets as Cathode of Zinc–Air Battery for Electrocatalytic Conversion of O ₂ into H ₂ O ₂ . ChemSusChem, 2020, 13, 1496-1503.	6.8	30
43	Theoretical Analysis of Electrochemical Formation and Phase Transition of Oxygenated Adsorbates on Pt(111). ACS Applied Materials & amp; Interfaces, 2016, 8, 20448-20458.	8.0	29
44	Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane. Angewandte Chemie, 2018, 130, 13304-13308.	2.0	29
45	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie, 2021, 133, 9160-9167.	2.0	26
46	Interfacial engineering of Ru–S–Sb/antimonene electrocatalysts for highly efficient electrolytic hydrogen generation in neutral electrolyte. Chemical Communications, 2019, 55, 10884-10887.	4.1	25
47	RuS2-x quantum dots/rGO as bifunctional hydrogen electrocatalysts for harvesting electrochemical neutralization energy. Journal of Power Sources, 2020, 472, 228625.	7.8	22
48	Defect-Rich MoO ₃ Nanobelt Cathode for a High-Performance Hybrid Alkali/Acid Zn-MoO ₃ Rechargeable Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 11524-11533.	6.7	20
49	Mechanistic study on Cu-catalyzed CO ₂ electroreduction into CH ₄ at simulated low overpotentials based on an improved electrochemical model. Physical Chemistry Chemical Physics, 2019, 21, 15531-15540.	2.8	17
50	Mechanistic Study of Pt-Catalyzed Electrooxidation of HCOOH in Acid Medium: Kinetic Considerations on the Effect of Solvation. Journal of Physical Chemistry C, 2018, 122, 24871-24884.	3.1	16
51	Moltenâ€Saltâ€Assisted Synthesis of Bismuth Nanosheets for Longâ€term Continuous Electrocatalytic Conversion of CO ₂ to Formate. Angewandte Chemie, 2020, 132, 20287-20294.	2.0	14
52	Vertical graphene nano-antennas for solar-to-hydrogen energy conversion. Solar Energy, 2020, 208, 379-387.	6.1	13
53	The Enhancement of Selectivity and Activity for Two-Electron Oxygen Reduction Reaction by Tuned Oxygen Defects on Amorphous Hydroxide Catalysts. CCS Chemistry, 2022, 4, 566-583.	7.8	13
54	Promotion for Full Water Splitting toward Vanadium-Incorporated MoO ₂ –MoNi ₄ Hybrid Nanoarrays. ACS Sustainable Chemistry and Engineering, 2021, 9, 13225-13232.	6.7	12

JUNXIANG CHEN

#	Article	IF	CITATIONS
55	Highâ€Performance Bifunctional Electrocatalysts of Palladium Decoration on Carbon Nanoarchitectures for Indirect Releasing of H ₂ Stored in Formate. Small Structures, 2021, 2, .	12.0	11
56	CeO ₂ quantumâ€dots engineering 3D carbon architectures toward dendriteâ€free Na anode and reversible Te cathode for highâ€performance Naâ€Te batteries. InformaÄnÃ-Materiály, 2022, 4, .	17.3	11
57	Marking Electrocatalysts on the "Volcanic Belt―of Hydrogen Electrode Reactions. Journal of Physical Chemistry C, 2021, 125, 5587-5595.	3.1	6
58	Potassiumâ€lon Hybrid Capacitors: Fast Redox Kinetics in Biâ€Heteroatom Doped 3D Porous Carbon Nanosheets for Highâ€Performance Hybrid Potassiumâ€lon Battery Capacitors (Adv. Energy Mater. 42/2019). Advanced Energy Materials, 2019, 9, 1970167.	19.5	5
59	Recognizing single-trial motor imagery EEG based on interpretable clustering method. Biomedical Signal Processing and Control, 2021, 63, 102171.	5.7	5
60	Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkaliâ€Acid Electrocatalytic Sulfion Recycling and H ₂ Generation. Angewandte Chemie, 2021, 133, 21720-21727.	2.0	4
61	Scoring model of convex probe endobronchial ultrasound multimodal imaging in differentiating benign and malignant lung lesions. Journal of Thoracic Disease, 2020, 12, 7645-7655.	1.4	4
62	Theoretical insights into the effect of the overpotential on CO electroreduction mechanisms on Cu(111): regulation and application of electrode potentials from a CO coverage-dependent electrochemical model. Physical Chemistry Chemical Physics, 2020, 22, 62-73.	2.8	3
63	Subâ€1 nm MoC Quantum Dots Decorating Nâ€Doped Graphene as Advanced Electrocatalysts of Flexible Hybrid Alkali–Acid Znâ€Quinone Battery. Small, 2022, , 2201144.	10.0	2