Michael C O donovan

List of Publications by Citations

Source: https://exaly.com/author-pdf/992167/michael-c-odonovan-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

815 146 120,517 332 h-index g-index citations papers 8.92 946 142,149 10.2 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
815	Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. <i>Nature</i> , 2007 , 447, 661-78	50.4	7801
814	A novel gene containing a trinucleotide repeat that is expanded and unstable on HuntingtonM disease chromosomes. The HuntingtonMDisease Collaborative Research Group. <i>Cell</i> , 1993 , 72, 971-83	56.2	6854
813	Biological insights from 108 schizophrenia-associated genetic loci. <i>Nature</i> , 2014 , 511, 421-7	50.4	5249
812	Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. <i>Nature</i> , 2009 , 460, 748-52	50.4	3568
811	Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. <i>Nature</i> , 2012 , 491, 119-24	50.4	3239
810	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for AlzheimerMdisease. <i>Nature Genetics</i> , 2013 , 45, 1452-8	36.3	2714
809	Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. <i>Lancet, The</i> , 2013 , 381, 1371-1379	40	2112
808	LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. <i>Nature Genetics</i> , 2015 , 47, 291-5	36.3	2096
807	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer disease. <i>Nature Genetics</i> , 2009 , 41, 1088-93	36.3	2018
806	Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. <i>Science</i> , 2007 , 316, 1336-41	33.3	1823
805	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. <i>Nature Genetics</i> , 2013 , 45, 984-94	36.3	1628
804	Synaptic, transcriptional and chromatin genes disrupted in autism. <i>Nature</i> , 2014 , 515, 209-15	50.4	1581
803	Genome-wide association study identifies five new schizophrenia loci. <i>Nature Genetics</i> , 2011 , 43, 969-76	i 36.3	1508
802	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with AlzheimerMdisease. <i>Nature Genetics</i> , 2011 , 43, 429-35	36.3	1421
801	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. <i>Nature Genetics</i> , 2018 , 50, 668-681	36.3	1301
800	Rare chromosomal deletions and duplications increase risk of schizophrenia. <i>Nature</i> , 2008 , 455, 237-41	50.4	1251
799	De novo mutations in schizophrenia implicate synaptic networks. <i>Nature</i> , 2014 , 506, 179-84	50.4	1163

(2015-2013)

798	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. <i>Nature Genetics</i> , 2013 , 45, 1150-9	36.3	1153
797	Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. <i>Nature Genetics</i> , 2007 , 39, 1329-37	36.3	1130
796	Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. <i>Nature Genetics</i> , 2011 , 43, 977-83	36.3	1094
795	Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. <i>American Journal of Human Genetics</i> , 2003 , 73, 34-48	11	985
794	Genome-wide association study identifies eight loci associated with blood pressure. <i>Nature Genetics</i> , 2009 , 41, 666-76	36.3	970
793	Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. <i>Nature Genetics</i> , 2008 , 40, 1056-8	36.3	949
792	Genetic meta-analysis of diagnosed AlzheimerMdisease identifies new risk loci and implicates Alltau, immunity and lipid processing. <i>Nature Genetics</i> , 2019 , 51, 414-430	36.3	917
791	Genome-wide analysis of genetic loci associated with Alzheimer disease. <i>JAMA - Journal of the American Medical Association</i> , 2010 , 303, 1832-40	27.4	888
790	Identification of loci associated with schizophrenia by genome-wide association and follow-up. <i>Nature Genetics</i> , 2008 , 40, 1053-5	36.3	877
7 ⁸ 9	Genetic architectures of psychiatric disorders: the emerging picture and its implications. <i>Nature Reviews Genetics</i> , 2012 , 13, 537-51	30.1	866
788	A mega-analysis of genome-wide association studies for major depressive disorder. <i>Molecular Psychiatry</i> , 2013 , 18, 497-511	15.1	853
787	Schizophrenia. <i>Lancet, The</i> , 2016 , 388, 86-97	40	836
786	High rates of schizophrenia in adults with velo-cardio-facial syndrome. <i>Archives of General Psychiatry</i> , 1999 , 56, 940-5		813
7 ⁸ 5	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. <i>Nature Genetics</i> , 2018 , 50, 381-389	36.3	787
784	The UK10K project identifies rare variants in health and disease. <i>Nature</i> , 2015 , 526, 82-90	50.4	776
783	Analysis of shared heritability in common disorders of the brain. <i>Science</i> , 2018 , 360,	33.3	666
782	Genome-wide association study identifies 30 loci associated with bipolar disorder. <i>Nature Genetics</i> , 2019 , 51, 793-803	36.3	662
781	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. <i>American Journal of Human Genetics</i> , 2015 , 97, 576-92	11	649

780	Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. <i>Nature</i> , 2010 , 464, 713-20	50.4	639
779	De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. <i>Molecular Psychiatry</i> , 2012 , 17, 142-53	15.1	611
778	Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. <i>Nature Genetics</i> , 1999 , 21, 271-7	36.3	601
777	Microduplications of 16p11.2 are associated with schizophrenia. <i>Nature Genetics</i> , 2009 , 41, 1223-7	36.3	550
776	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. <i>Nature Genetics</i> , 2017 , 49, 27-35	36.3	530
775	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in AlzheimerMdisease. <i>Nature Genetics</i> , 2017 , 49, 1373-1384	36.3	508
774	Genes for schizophrenia? Recent findings and their pathophysiological implications. <i>Lancet, The</i> , 2003 , 361, 417-9	40	488
773	DNA Pooling: a tool for large-scale association studies. <i>Nature Reviews Genetics</i> , 2002 , 3, 862-71	30.1	468
772	Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). <i>Human Molecular Genetics</i> , 2006 , 15, 2276-84	5.6	437
771	High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. <i>Nature Genetics</i> , 2012 , 44, 1336-40	36.3	436
770	Schizophrenia. <i>Nature Reviews Disease Primers</i> , 2015 , 1, 15067	51.1	432
769	Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. <i>Nature</i> , 2007 , 450, 887-92	50.4	421
768	Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. <i>American Journal of Human Genetics</i> , 2014 , 95, 535-52	11	411
767	The Kraepelinian dichotomy - going, going but still not gone. <i>British Journal of Psychiatry</i> , 2010 , 196, 92-5	5.4	411
766	The genetics of schizophrenia and bipolar disorder: dissecting psychosis. <i>Journal of Medical Genetics</i> , 2005 , 42, 193-204	5.8	406
765	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. <i>Cell</i> , 2019 , 179, 1469-1482.e11	56.2	402
764	Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. <i>Lancet, The</i> , 2010 , 376, 1401-8	40	399
763	Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. <i>American Journal of Human Genetics</i> , 2012 , 91, 597-607	11	391

(2003-2010)

762	The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. <i>Molecular Psychiatry</i> , 2010 , 15, 1016-22	15.1	389
761	Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. <i>Schizophrenia Bulletin</i> , 2006 , 32, 9-16	1.3	385
760	Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. <i>Archives of Neurology</i> , 2008 , 65, 45-53		362
759	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. <i>Cell</i> , 2018 , 173, 1705-1715.e16	56.2	360
758	Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2010 , 49, 884-97	7.2	357
757	Genomewide association studies: history, rationale, and prospects for psychiatric disorders. <i>American Journal of Psychiatry</i> , 2009 , 166, 540-56	11.9	355
756	Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. <i>Human Molecular Genetics</i> , 2009 , 18, 1497-503	5.6	346
755	Susceptibility locus for AlzheimerMdisease on chromosome 10. <i>Science</i> , 2000 , 290, 2304-5	33.3	345
754	Neurodevelopmental hypothesis of schizophrenia. British Journal of Psychiatry, 2011, 198, 173-5	5.4	338
753	Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. <i>PLoS Genetics</i> , 2009 , 5, e1000534	6	337
752	Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. <i>American Journal of Human Genetics</i> , 2009 , 85, 13-24	11	333
751	Psychiatric Genomics: An Update and an Agenda. American Journal of Psychiatry, 2018, 175, 15-27	11.9	328
750	Rheumatoid arthritis association at 6q23. <i>Nature Genetics</i> , 2007 , 39, 1431-3	36.3	328
749	Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 2013, 150, 3-10	3.6	323
748	Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. <i>Human Molecular Genetics</i> , 2008 , 17, 458-65	5.6	315
747	Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. <i>Molecular Psychiatry</i> , 2012 , 17, 887-905	15.1	308
746	Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. <i>Genomics</i> , 1998 , 52, 44-9	4.3	303
745	A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. <i>American Journal of Human Genetics</i> , 2003 , 73, 152-61	11	301

744	Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. <i>Nature Genetics</i> , 2015 , 47, 1385-92	36.3	299
743	Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. <i>Molecular Psychiatry</i> , 2009 , 14, 252-60	15.1	296
742	Genetic identification of brain cell types underlying schizophrenia. <i>Nature Genetics</i> , 2018 , 50, 825-833	36.3	295
741	Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. <i>American Journal of Human Genetics</i> , 2013 , 92, 197-209	11	293
740	The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. <i>Biological Psychiatry</i> , 2017 , 81, 9-20	7.9	289
739	Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. <i>Nature Neuroscience</i> , 2016 , 19, 571-7	25.5	284
738	Altering the course of schizophrenia: progress and perspectives. <i>Nature Reviews Drug Discovery</i> , 2016 , 15, 485-515	64.1	284
737	Analysis of copy number variations at 15 schizophrenia-associated loci. <i>British Journal of Psychiatry</i> , 2014 , 204, 108-14	5.4	283
736	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. <i>Science</i> , 2018 , 362,	33.3	277
735	Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of AlzheimerMdisease. <i>PLoS ONE</i> , 2010 , 5, e13950	3.7	276
734	Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. <i>Nature Genetics</i> , 2017 , 49, 1576-1583	36.3	272
733	Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. <i>PLoS Genetics</i> , 2008 , 4, e28	6	270
732	Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. <i>Molecular Psychiatry</i> , 2014 , 19, 1017-1024	15.1	258
731	The molecular genetics of schizophrenia: new findings promise new insights. <i>Molecular Psychiatry</i> , 2004 , 9, 14-27	15.1	257
730	Optimal Temperature Selection for Mutation Detection by Denaturing HPLC and Comparison to Single-Stranded Conformation Polymorphism and Heteroduplex Analysis. <i>Clinical Chemistry</i> , 1999 , 45, 1133-1140	5.5	252
729	Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. <i>Nature Genetics</i> , 2017 , 49, 152-156	36.3	251
728	Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. <i>Molecular Psychiatry</i> , 2013 , 18, 1225-34	15.1	251
727	Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2006, 103, 7729-34	11.5	249

(2009-2005)

726	Schizophrenia: genes at last?. <i>Trends in Genetics</i> , 2005 , 21, 518-25	8.5	241
725	Predictors of developmental dyslexia in European orthographies with varying complexity. <i>Journal of Child Psychology and Psychiatry and Allied Disciplines</i> , 2013 , 54, 686-94	7.9	238
724	The penetrance of copy number variations for schizophrenia and developmental delay. <i>Biological Psychiatry</i> , 2014 , 75, 378-85	7.9	236
723	Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. <i>Nature Genetics</i> , 1999 , 21, 71-2	36.3	236
722	Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. <i>American Journal of Human Genetics</i> , 2005 , 76, 581-91	11	232
721	Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. <i>Nature Neuroscience</i> , 2016 , 19, 48-54	25.5	227
720	Cognitive mechanisms underlying reading and spelling development in five European orthographies. <i>Learning and Instruction</i> , 2014 , 29, 65-77	5.8	223
719	Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. <i>Nature Genetics</i> , 2018 , 50, 538-548	36.3	222
718	Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. <i>Molecular Psychiatry</i> , 2011 , 16, 429-41	15.1	221
717	Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. <i>American Journal of Human Genetics</i> , 2011 , 88, 372-81	11	221
716	Evidence for novel susceptibility genes for late-onset Alzheimer disease from a genome-wide association study of putative functional variants. <i>Human Molecular Genetics</i> , 2007 , 16, 865-73	5.6	221
715	Evaluating historical candidate genes for schizophrenia. <i>Molecular Psychiatry</i> , 2015 , 20, 555-62	15.1	219
714	The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. <i>Human Molecular Genetics</i> , 2011 , 20, 141-54	5.6	217
713	The genetic deconstruction of psychosis. <i>Schizophrenia Bulletin</i> , 2007 , 33, 905-11	1.3	215
712	All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. <i>PLoS Genetics</i> , 2013 , 9, e1003449	6	209
711	Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. <i>Archives of General Psychiatry</i> , 2005 , 62, 642-8		209
710	Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. <i>Molecular Psychiatry</i> , 2003 , 8, 485-7	15.1	206
709	Meta-analysis of 32 genome-wide linkage studies of schizophrenia. <i>Molecular Psychiatry</i> , 2009 , 14, 774-	-8 5 5.1	202

708	Expanded CAG repeats in schizophrenia and bipolar disorder. <i>Nature Genetics</i> , 1995 , 10, 380-1	36.3	199
707	Cis-acting variation in the expression of a high proportion of genes in human brain. <i>Human Genetics</i> , 2003 , 113, 149-53	6.3	198
706	Genetic overlap between autism, schizophrenia and bipolar disorder. <i>Genome Medicine</i> , 2009 , 1, 102	14.4	197
705	Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3. <i>American Journal of Psychiatry</i> , 2012 , 169, 195-204	11.9	195
704	Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. <i>Biological Psychiatry</i> , 2015 , 77, 52-8	7.9	192
703	Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. <i>PLoS Genetics</i> , 2013 , 9, e1003455	6	192
702	Copy number variation in schizophrenia in Sweden. <i>Molecular Psychiatry</i> , 2014 , 19, 762-73	15.1	191
701	Methylomic trajectories across human fetal brain development. <i>Genome Research</i> , 2015 , 25, 338-52	9.7	188
700	Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. <i>Nature Communications</i> , 2015 , 6, 8111	17.4	186
699	Identifying gene-environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations. <i>Schizophrenia Bulletin</i> , 2014 , 40, 729-36	1.3	186
698	Comparative genetic architectures of schizophrenia in East Asian and European populations. <i>Nature Genetics</i> , 2019 , 51, 1670-1678	36.3	185
69 7	Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. <i>Molecular Psychiatry</i> , 2013 , 18, 708-12	15.1	184
696	Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophrenia Bulletin, 2009, 35, 851-4	1.3	183
695	Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. <i>American Journal of Human Genetics</i> , 2000 , 67, 652-65	3 ¹¹	182
694	Genetics of psychosis; insights from views across the genome. <i>Human Genetics</i> , 2009 , 126, 3-12	6.3	180
693	Full genome screen for Alzheimer disease: stage II analysis. <i>American Journal of Medical Genetics</i> Part A, 2002 , 114, 235-44		179
692	Functional analysis of human promoter polymorphisms. <i>Human Molecular Genetics</i> , 2003 , 12, 2249-54	5.6	179
691	A novel Alzheimer disease locus located near the gene encoding tau protein. <i>Molecular Psychiatry</i> , 2016 , 21, 108-17	15.1	175

(2004-2011)

690	Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. <i>Molecular Psychiatry</i> , 2011 , 16, 286-92	15.1	175
689	Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci. <i>Molecular Psychiatry</i> , 2016 , 21, 749-57	15.1	175
688	Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry, 2014, 71, 657-64	14.5	172
687	Psychosis genetics: modeling the relationship between schizophrenia, bipolar disorder, and mixed (or "schizoaffective") psychoses. <i>Schizophrenia Bulletin</i> , 2009 , 35, 482-90	1.3	169
686	A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. <i>Archives of General Psychiatry</i> , 2008 , 65, 203-10		168
685	The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. <i>Molecular Psychiatry</i> , 2006 , 11, 446-58	15.1	164
684	Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. <i>Archives of General Psychiatry</i> , 2005 , 62, 1081-8		164
683	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. <i>Nature Neuroscience</i> , 2016 , 19, 420-431	25.5	163
682	Common variants at VRK2 and TCF4 conferring risk of schizophrenia. <i>Human Molecular Genetics</i> , 2011 , 20, 4076-81	5.6	162
681	Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. <i>American Journal of Human Genetics</i> , 2015 , 96, 283-94	11	161
68o	The genetics of attention deficit hyperactivity disorder. <i>Human Molecular Genetics</i> , 2005 , 14 Spec No. 2, R275-82	5.6	158
679	Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. <i>Human Molecular Genetics</i> , 2005 , 14, 1947-54	5.6	156
678	Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). <i>Archives of General Psychiatry</i> , 2004 , 61, 336-44		155
677	Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. <i>Archives of General Psychiatry</i> , 2010 , 67, 318-27		154
676	Universal, robust, highly quantitative SNP allele frequency measurement in DNA pools. <i>Human Genetics</i> , 2002 , 110, 471-8	6.3	152
675	Cheap, accurate and rapid allele frequency estimation of single nucleotide polymorphisms by primer extension and DHPLC in DNA pools. <i>Human Genetics</i> , 2000 , 107, 488-93	6.3	152
674	Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. <i>Archives of General Psychiatry</i> , 2005 , 62, 1275-8		150
673	Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. <i>American Journal of Psychiatry</i> , 2004 , 161, 133-8	11.9	148

672	Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. <i>American Journal of Psychiatry</i> , 2012 , 169, 186-94	11.9	147
671	Additional support for schizophrenia linkage on chromosomes 6 and 8: a multicenter study. Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6 and 8. <i>American Journal of Medical Genetics Part A</i> , 1996 , 67, 580-94		147
670	Convergent genetic and expression data implicate immunity in Alzheimerland disease. <i>Alzheimerls and Dementia</i> , 2015 , 11, 658-71	1.2	146
669	Phenotypic Manifestation of Genetic Risk for Schizophrenia During Adolescence in the General Population. <i>JAMA Psychiatry</i> , 2016 , 73, 221-8	14.5	145
668	Genome-wide association study of schizophrenia in a Japanese population. <i>Biological Psychiatry</i> , 2011 , 69, 472-8	7.9	145
667	Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. <i>Schizophrenia Bulletin</i> , 2014 , 40, 504-15	1.3	144
666	Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. <i>Molecular Psychiatry</i> , 2015 , 20, 207-14	15.1	144
665	Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use. <i>British Journal of Psychiatry</i> , 2007 , 191, 402-7	5.4	144
664	Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. <i>Progress in Neurobiology</i> , 2015 , 134, 36-54	10.9	143
663	Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2006 , 141B, 96-10) 3 ·5	143
662	Is COMT a susceptibility gene for schizophrenia?. Schizophrenia Bulletin, 2007, 33, 635-41	1.3	143
661	Structural brain abnormalities associated with deletion at chromosome 22q11: quantitative neuroimaging study of adults with velo-cardio-facial syndrome. <i>British Journal of Psychiatry</i> , 2001 , 178, 412-9	5.4	143
660	Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. <i>Genome Medicine</i> , 2014 , 6, 29	14.4	142
659	Schizophrenia and the neurodevelopmental continuum:evidence from genomics. <i>World Psychiatry</i> , 2017 , 16, 227-235	14.4	138
658	A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease. <i>American Journal of Human Genetics</i> , 2006 , 78, 78-88	11	137
657	Agreement between maternal report and antenatal records for a range of pre and peri-natal factors: the influence of maternal and child characteristics. <i>Early Human Development</i> , 2007 , 83, 497-50	4 ^{2.2}	135
656	A genome-wide association study for late-onset AlzheimerMdisease using DNA pooling. <i>BMC Medical Genomics</i> , 2008 , 1, 44	3.7	133
655	Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. <i>Biological Psychiatry</i> , 2004 , 55, 971-5	7.9	133

(2015-2005)

654	Whole genome linkage scan of recurrent depressive disorder from the depression network study. <i>Human Molecular Genetics</i> , 2005 , 14, 3337-45	5.6	133
653	The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. <i>Nature Genetics</i> , 2017 , 49, 1167-1173	36.3	132
652	Logic and justification for dimensional assessment of symptoms and related clinical phenomena in psychosis: relevance to DSM-5. <i>Schizophrenia Research</i> , 2013 , 150, 15-20	3.6	132
651	Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample. <i>Molecular Psychiatry</i> , 2002 , 7, 718-25	15.1	132
650	Evidence that duplications of 22q11.2 protect against schizophrenia. <i>Molecular Psychiatry</i> , 2014 , 19, 37-	405.1	130
649	Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. <i>Molecular Psychiatry</i> , 2011 , 16, 2-4	15.1	130
648	Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. <i>Biological Psychiatry</i> , 2017 , 81, 325-335	7.9	129
647	Wake-up call for British psychiatry. <i>British Journal of Psychiatry</i> , 2008 , 193, 6-9	5.4	129
646	Paternal age and risk for schizophrenia. British Journal of Psychiatry, 2003, 183, 405-8	5.4	128
645	Support for RGS4 as a susceptibility gene for schizophrenia. <i>Biological Psychiatry</i> , 2004 , 55, 192-5	7.9	125
644	Adolescent clinical outcomes for young people with attention-deficit hyperactivity disorder. <i>British Journal of Psychiatry</i> , 2010 , 196, 235-40	5.4	124
643	Variation at the DAOA/G30 locus influences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder. <i>Archives of General Psychiatry</i> , 2006 , 63, 366-73		124
642	Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. <i>Molecular Psychiatry</i> , 2012 , 17, 996-1006	15.1	123
641	Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities. <i>JAMA Psychiatry</i> , 2016 , 73, 20-30	14.5	120
640	Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. <i>Archives of General Psychiatry</i> , 2010 , 67, 692-700		120
639	A network of dopaminergic gene variations implicated as risk factors for schizophrenia. <i>Human Molecular Genetics</i> , 2008 , 17, 747-58	5.6	120
638	Recent advances in the genetics of schizophrenia. <i>Human Molecular Genetics</i> , 2003 , 12 Spec No 2, R125-	- 353 6	120
637	Novel Findings from CNVs Implicate Inhibitory and Excitatory Signaling Complexes in Schizophrenia. <i>Neuron</i> , 2015 , 86, 1203-14	13.9	119

636	Genetic variation of brain-derived neurotrophic factor (BDNF) in bipolar disorder: case-control study of over 3000 individuals from the UK. <i>British Journal of Psychiatry</i> , 2006 , 188, 21-5	5.4	119
635	Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. <i>Molecular Psychiatry</i> , 2006 , 11, 1085-91, 1061	15.1	119
634	Confirmation of association between expanded CAG/CTG repeats and both schizophrenia and bipolar disorder. <i>Psychological Medicine</i> , 1996 , 26, 1145-53	6.9	119
633	Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function. <i>PLoS Genetics</i> , 2010 , 6, e1001097	6	118
632	A genome-wide association study in 574 schizophrenia trios using DNA pooling. <i>Molecular Psychiatry</i> , 2009 , 14, 796-803	15.1	117
631	Meta-analysis of COMT val158met in panic disorder: ethnic heterogeneity and gender specificity. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 667-73	3.5	117
630	A comprehensive family-based replication study of schizophrenia genes. <i>JAMA Psychiatry</i> , 2013 , 70, 573	3 -84 .5	115
629	Copy number variation in bipolar disorder. <i>Molecular Psychiatry</i> , 2016 , 21, 89-93	15.1	113
628	An update on the genetics of schizophrenia. Current Opinion in Psychiatry, 2006, 19, 158-64	4.9	113
627	ATP2A2 mutations in DarierMdisease and their relationship to neuropsychiatric phenotypes. <i>Human Molecular Genetics</i> , 1999 , 8, 1631-6	5.6	113
626	Four components describe behavioral symptoms in 1,120 individuals with late-onset Alzheimer M disease. <i>Journal of the American Geriatrics Society</i> , 2006 , 54, 1348-54	5.6	111
625	A systematic genomewide linkage study in 353 sib pairs with schizophrenia. <i>American Journal of Human Genetics</i> , 2003 , 73, 1355-67	11	111
624	Concurrent validity of the OPCRIT diagnostic system. Comparison of OPCRIT diagnoses with consensus best-estimate lifetime diagnoses. <i>British Journal of Psychiatry</i> , 1996 , 169, 58-63	5.4	111
623	Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case-control sample. <i>Molecular Psychiatry</i> , 2013 , 18, 1302-7	15.1	110
622	High loading of polygenic risk for ADHD in children with comorbid aggression. <i>American Journal of Psychiatry</i> , 2013 , 170, 909-16	11.9	110
621	Bipolar disorder and polymorphisms in the dysbindin gene (DTNBP1). <i>Biological Psychiatry</i> , 2005 , 57, 696-701	7.9	110
620	Genetic Association of Major Depression With Atypical Features and Obesity-Related Immunometabolic Dysregulations. <i>JAMA Psychiatry</i> , 2017 , 74, 1214-1225	14.5	109
619	Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. <i>Archives of General Psychiatry</i> , 2010 , 67, 667-73		109

(2011-2015)

618	Genetic overlap between AlzheimerMdisease and ParkinsonMdisease at the MAPT locus. <i>Molecular Psychiatry</i> , 2015 , 20, 1588-95	15.1	107
617	Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. <i>Lancet Psychiatry,the</i> , 2016 , 3, 77-83	23.3	107
616	DAPK1 variants are associated with AlzheimerMdisease and allele-specific expression. <i>Human Molecular Genetics</i> , 2006 , 15, 2560-8	5.6	107
615	Genetic risk for attention-deficit/hyperactivity disorder contributes to neurodevelopmental traits in the general population. <i>Biological Psychiatry</i> , 2014 , 76, 664-71	7.9	105
614	A simple method for analyzing microsatellite allele image patterns generated from DNA pools and its application to allelic association studies. <i>American Journal of Human Genetics</i> , 1998 , 62, 1189-97	11	105
613	Candidate-gene association studies of schizophrenia. American Journal of Human Genetics, 1999, 65, 58	7 1 92	105
612	Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. <i>World Psychiatry</i> , 2007 , 6, 84-91	14.4	105
611	Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. <i>Molecular Psychiatry</i> , 2012 , 17, 193-201	15.1	104
610	GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. <i>American Journal of Psychiatry</i> , 2019 , 176, 651-660	11.9	103
609	Characterization of a family with rare deletions in CNTNAP5 and DOCK4 suggests novel risk loci for autism and dyslexia. <i>Biological Psychiatry</i> , 2010 , 68, 320-8	7.9	103
608	Convergent evidence for 2MM tyclic nucleotide 3Mphosphodiesterase as a possible susceptibility gene for schizophrenia. <i>Archives of General Psychiatry</i> , 2006 , 63, 18-24		102
607	Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. <i>Molecular Psychiatry</i> , 2005 , 10, 939-43	15.1	102
606	At-risk variant in TCF7L2 for type II diabetes increases risk of schizophrenia. <i>Biological Psychiatry</i> , 2011 , 70, 59-63	7.9	101
605	Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 12469-74	11.5	101
604	Examining for association between candidate gene polymorphisms in the dopamine pathway and attention-deficit hyperactivity disorder: a family-based study. <i>American Journal of Medical Genetics Part A</i> , 2001 , 105, 464-70		101
603	Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia. <i>Translational Psychiatry</i> , 2017 , 7, e1155	8.6	100
602	Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease. <i>Circulation</i> , 2015 , 131, 2061-2069	16.7	100
601	Cannabis, COMT and psychotic experiences. <i>British Journal of Psychiatry</i> , 2011 , 199, 380-5	5.4	100

600	Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. <i>Nature Genetics</i> , 2019 , 51, 659-674	36.3	99
599	Clustering of metabolic comorbidity in schizophrenia: a genetic contribution?. <i>Journal of Psychopharmacology</i> , 2005 , 19, 47-55	4.6	99
598	The implications of the shared genetics of psychiatric disorders. <i>Nature Medicine</i> , 2016 , 22, 1214-1219	50.5	97
597	New approaches to psychiatric diagnostic classification. <i>Neuron</i> , 2014 , 84, 564-71	13.9	95
596	Copy number variation in schizophrenia in the Japanese population. <i>Biological Psychiatry</i> , 2010 , 67, 283	-6 .9	95
595	Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphisms: relationships to monoamine metabolite concentrations in CSF of healthy volunteers. <i>European Archives of Psychiatry and Clinical Neuroscience</i> , 1997 , 247, 297-302	5.1	95
594	Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. <i>Biological Psychiatry</i> , 2008 , 64, 419-27	7.9	95
593	Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. <i>Pharmacogenomics</i> , 2008 , 9, 1437-43	2.6	95
592	Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. <i>Lancet Psychiatry,the</i> , 2017 , 4, 57-62	23.3	94
591	Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. <i>Molecular Psychiatry</i> , 2010 , 15, 146-53	15.1	94
590	Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. <i>PLoS Medicine</i> , 2012 , 9, e1001326	11.6	94
589	Determination of the genomic structure and mutation screening in schizophrenic individuals for five subunits of the N-methyl-D-aspartate glutamate receptor. <i>Molecular Psychiatry</i> , 2002 , 7, 508-14	15.1	94
588	Is the dysbindin gene (DTNBP1) a susceptibility gene for schizophrenia?. <i>Schizophrenia Bulletin</i> , 2005 , 31, 800-5	1.3	93
587	A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder. <i>Biological Psychiatry</i> , 2018 , 83, 1044-1053	7.9	93
586	Genotyping single nucleotide polymorphisms by primer extension and high performance liquid chromatography. <i>Human Genetics</i> , 1999 , 104, 89-93	6.3	92
585	Cognitive Performance Among Carriers of Pathogenic Copy Number Variants: Analysis of 152,000 UK Biobank Subjects. <i>Biological Psychiatry</i> , 2017 , 82, 103-110	7.9	91
584	Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. <i>Molecular Psychiatry</i> , 2012 , 17, 906-17	15.1	91
583	The serotonin-2A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain. <i>Molecular Psychiatry</i> , 2004 , 9, 109-14	15.1	91

582	Finding schizophrenia genes. Journal of Clinical Investigation, 2005, 115, 1440-8	15.9	91
581	Genome-wide association study of AlzheimerMdisease with psychotic symptoms. <i>Molecular Psychiatry</i> , 2012 , 17, 1316-27	15.1	90
580	Low gene expression conferred by association of an allele of the 5-HT2C receptor gene with antipsychotic-induced weight gain. <i>American Journal of Psychiatry</i> , 2005 , 162, 613-5	11.9	90
579	Gene-wide analysis detects two new susceptibility genes for AlzheimerMdisease. <i>PLoS ONE</i> , 2014 , 9, e94661	3.7	90
578	Case-control association study of 59 candidate genes reveals the DRD2 SNP rs6277 (C957T) as the only susceptibility factor for schizophrenia in the Bulgarian population. <i>Journal of Human Genetics</i> , 2009 , 54, 98-107	4.3	88
577	Alpha-2 macroglobulin gene and Alzheimer disease. <i>Nature Genetics</i> , 1999 , 22, 17-9; author reply 21-2	36.3	88
576	Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. <i>Nature Communications</i> , 2017 , 8, 14774	17.4	85
575	Maternally derived microduplications at 15q11-q13: implication of imprinted genes in psychotic illness. <i>American Journal of Psychiatry</i> , 2011 , 168, 408-17	11.9	84
574	Phenotypic and genetic complexity of psychosis. Invited commentary on Schizophrenia: a common disease caused by multiple rare alleles. <i>British Journal of Psychiatry</i> , 2007 , 190, 200-3	5.4	84
573	Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimerাgh disease. <i>Human Genetics</i> , 2001 , 109, 646-52	6.3	84
572	Schizoaffective Disorder in the DSM-5. Schizophrenia Research, 2013, 150, 21-5	3.6	83
571	Obstetric complications and schizophrenia: a computed tomographic study. <i>Psychological Medicine</i> , 1988 , 18, 331-9	6.9	82
570	Association of Genetic Risk Variants With Attention-Deficit/Hyperactivity Disorder Trajectories in the General Population. <i>JAMA Psychiatry</i> , 2016 , 73, 1285-1292	14.5	81
569	Evaluation of a susceptibility gene for schizophrenia: genotype based meta-analysis of RGS4 polymorphisms from thirteen independent samples. <i>Biological Psychiatry</i> , 2006 , 60, 152-62	7.9	80
568	DNA pooling identifies QTLs on chromosome 4 for general cognitive ability in children. <i>Human Molecular Genetics</i> , 1999 , 8, 915-22	5.6	80
567	Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders. <i>Neuron</i> , 2015 , 86, 1189-202	13.9	79
566	Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q. <i>Human Molecular Genetics</i> , 2000 , 9, 843-8	5.6	79
565	Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. <i>British Journal of Psychiatry</i> , 2013 , 203, 107-11	5.4	78

564	Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. <i>Biological Psychiatry</i> , 2010 , 67, 263-9	7.9	78
563	Effects of differential genotyping error rate on the type I error probability of case-control studies. <i>Human Heredity</i> , 2006 , 61, 55-64	1.1	78
562	Association of Genetic Risk for Schizophrenia With Nonparticipation Over Time in a Population-Based Cohort Study. <i>American Journal of Epidemiology</i> , 2016 , 183, 1149-58	3.8	77
561	Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for AlzheimerMdisease. <i>Molecular Psychiatry</i> , 2013 , 18, 461-70	15.1	77
560	Association analysis of monoamine oxidase A and attention deficit hyperactivity disorder. <i>American Journal of Medical Genetics Part A</i> , 2003 , 116B, 84-9		77
559	Genetic utility of broadly defined bipolar schizoaffective disorder as a diagnostic concept. <i>British Journal of Psychiatry</i> , 2009 , 195, 23-9	5.4	76
558	Psychopathy trait scores in adolescents with childhood ADHD: the contribution of genotypes affecting MAOA, 5HTT and COMT activity. <i>Psychiatric Genetics</i> , 2009 , 19, 312-9	2.9	76
557	Distribution and expression of picalm in Alzheimer disease. <i>Journal of Neuropathology and Experimental Neurology</i> , 2010 , 69, 1071-7	3.1	76
556	Analysis of Intellectual Disability Copy Number Variants for Association With Schizophrenia. <i>JAMA Psychiatry</i> , 2016 , 73, 963-969	14.5	75
555	Biological overlap of attention-deficit/hyperactivity disorder and autism spectrum disorder: evidence from copy number variants. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2014 , 53, 761-70.e26	7.2	74
554	HTR2A: association and expression studies in neuropsychiatric genetics. <i>Annals of Medicine</i> , 2005 , 37, 121-9	1.5	74
553	Examining the independent and joint effects of molecular genetic liability and environmental exposures in schizophrenia: results from the EUGEI study. <i>World Psychiatry</i> , 2019 , 18, 173-182	14.4	73
552	No major schizophrenia locus detected on chromosome 1q in a large multicenter sample. <i>Science</i> , 2002 , 296, 739-41	33.3	73
551	Changes in dopamine D1, D2 and D3 receptor mRNA levels in rat brain following antipsychotic treatment. <i>Psychopharmacology</i> , 1992 , 106, 479-83	4.7	73
550	Mental health resilience in the adolescent offspring of parents with depression: a prospective longitudinal study. <i>Lancet Psychiatry,the</i> , 2016 , 3, 49-57	23.3	72
549	SORL1 variants and risk of late-onset AlzheimerMdisease. <i>Neurobiology of Disease</i> , 2008 , 29, 293-6	7.5	72
548	Association at SYNE1 in both bipolar disorder and recurrent major depression. <i>Molecular Psychiatry</i> , 2013 , 18, 614-7	15.1	71
547	Lack of effect of antidepressant drugs on the levels of mRNAs encoding serotonergic receptors, synthetic enzymes and 5HT transporter. <i>Neuropharmacology</i> , 1994 , 33, 433-40	5.5	71

(2015-2014)

546	genome-wide association and polygenic scoring study. <i>American Journal of Medical Genetics Part B:</i> Neuropsychiatric Genetics, 2014 , 165B, 428-37	3.5	70
545	Recent genomic advances in schizophrenia. <i>Clinical Genetics</i> , 2012 , 81, 103-9	4	70
544	No association between schizophrenia and polymorphisms in COMT in two large samples. <i>American Journal of Psychiatry</i> , 2005 , 162, 1736-8	11.9	70
543	Evidence of Common Genetic Overlap Between Schizophrenia and Cognition. <i>Schizophrenia Bulletin</i> , 2016 , 42, 832-42	1.3	69
542	Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results. <i>Psychological Medicine</i> , 2012 , 42, 607-16	6.9	69
541	De novo rates and selection of schizophrenia-associated copy number variants. <i>Biological Psychiatry</i> , 2011 , 70, 1109-14	7.9	69
540	AlzheimerMdisease genetics: current knowledge and future challenges. <i>International Journal of Geriatric Psychiatry</i> , 2011 , 26, 793-802	3.9	69
539	Pooled DNA genotyping on Affymetrix SNP genotyping arrays. <i>BMC Genomics</i> , 2006 , 7, 27	4.5	69
538	Refining the attention deficit hyperactivity disorder phenotype for molecular genetic studies. <i>Molecular Psychiatry</i> , 2006 , 11, 714-20	15.1	69
537	Follow-up of genetic linkage findings on chromosome 16p13: evidence of association of N-methyl-D aspartate glutamate receptor 2A gene polymorphism with ADHD. <i>Molecular Psychiatry</i> , 2004 , 9, 169-73	15.1	69
536	Compound heterozygosity and nonsense mutations in the alpha(1)-subunit of the inhibitory glycine receptor in hyperekplexia. <i>Human Genetics</i> , 2001 , 109, 267-70	6.3	69
535	Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. <i>Genome Biology</i> , 2018 , 19, 194	18.3	69
534	An Analysis of Two Genome-wide Association Meta-analyses Identifies a New Locus for Broad Depression Phenotype. <i>Biological Psychiatry</i> , 2017 , 82, 322-329	7.9	68
533	No support for association between the dopamine transporter (DAT1) gene and ADHD. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2005 , 139B, 7-10	3.5	68
532	Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia		68
531	Common variant at 16p11.2 conferring risk of psychosis. <i>Molecular Psychiatry</i> , 2014 , 19, 108-14	15.1	67
530	Familiality of symptom dimensions in schizophrenia. Schizophrenia Research, 2001, 47, 223-32	3.6	67
529	Schizophrenia genetics: emerging themes for a complex disorder. <i>Molecular Psychiatry</i> , 2015 , 20, 72-6	15.1	66

528	Advances in genetic findings on attention deficit hyperactivity disorder. <i>Psychological Medicine</i> , 2007 , 37, 1681-92	6.9	66
527	Association Between Schizophrenia-Related Polygenic Liability and the Occurrence and Level of Mood-Incongruent Psychotic Symptoms in Bipolar Disorder. <i>JAMA Psychiatry</i> , 2018 , 75, 28-35	14.5	66
526	A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. <i>Behavior Genetics</i> , 2001 , 31, 497-509) ^{3.2}	65
525	Characterizing Developmental Trajectories and the Role of Neuropsychiatric Genetic Risk Variants in Early-Onset Depression. <i>JAMA Psychiatry</i> , 2019 , 76, 306-313	14.5	65
524	A bias-reducing pathway enrichment analysis of genome-wide association data confirmed association of the MHC region with schizophrenia. <i>Journal of Medical Genetics</i> , 2012 , 49, 96-103	5.8	64
523	Schizophrenia genetics: advancing on two fronts. <i>Current Opinion in Genetics and Development</i> , 2009 , 19, 266-70	4.9	64
522	Schizophrenia and functional polymorphisms in the MAOA and COMT genes: no evidence for association or epistasis. <i>American Journal of Medical Genetics Part A</i> , 2002 , 114, 491-6		64
521	Strong bias in the location of functional promoter polymorphisms. <i>Human Mutation</i> , 2005 , 26, 214-23	4.7	64
520	Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size. <i>Molecular Psychiatry</i> , 2020 , 25, 1822-1834	15.1	64
519	Reasons for discontinuing clozapine: A cohort study of patients commencing treatment. <i>Schizophrenia Research</i> , 2016 , 174, 113-119	3.6	63
518	Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. <i>Molecular Psychiatry</i> , 2008 , 13, 162-72	15.1	63
517	Further evidence for high rates of schizophrenia in 22q11.2 deletion syndrome. <i>Schizophrenia Research</i> , 2014 , 153, 231-6	3.6	62
516	Genetic predisposition to increased blood cholesterol and triglyceride lipid levels and risk of Alzheimer disease: a Mendelian randomization analysis. <i>PLoS Medicine</i> , 2014 , 11, e1001713	11.6	62
515	Independent estimation of the frequency of rare CNVs in the UK population confirms their role in schizophrenia. <i>Schizophrenia Research</i> , 2012 , 135, 1-7	3.6	62
514	Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. <i>Molecular Psychiatry</i> , 2009 , 14, 30-6	15.1	62
513	Further support for an association between a polymorphic CAG repeat in the hKCa3 gene and schizophrenia. <i>Molecular Psychiatry</i> , 1998 , 3, 266-9	15.1	62
512	Stressful life events, 5-HTT genotype and risk of depression. British Journal of Psychiatry, 2006 , 188, 199)- <u>3</u> .Q1	62
511	No evidence for allelic association between bipolar disorder and monoamine oxidase A gene polymorphisms. <i>American Journal of Medical Genetics Part A</i> , 1995 , 60, 322-4		62

510	Pleiotropic Effects of Trait-Associated Genetic Variation on DNA Methylation: Utility for Refining GWAS Loci. <i>American Journal of Human Genetics</i> , 2017 , 100, 954-959	11	61
509	CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. <i>Human Molecular Genetics</i> , 2014 , 23, 1669-76	5.6	61
508	DNA pooling as a tool for large-scale association studies in complex traits. <i>Annals of Medicine</i> , 2004 , 36, 146-52	1.5	61
507	Factor analysis of schizophrenic symptoms using the OPCRIT checklist. <i>Schizophrenia Research</i> , 1996 , 22, 233-9	3.6	61
506	Optimal temperature selection for mutation detection by denaturing HPLC and comparison to single-stranded conformation polymorphism and heteroduplex analysis. <i>Clinical Chemistry</i> , 1999 , 45, 1133-40	5.5	61
505	The contribution of gene-environment interaction to psychopathology. <i>Development and Psychopathology</i> , 2007 , 19, 989-1004	4.3	60
504	Psychiatric genetics: back to the future. <i>Molecular Psychiatry</i> , 2000 , 5, 22-31	15.1	60
503	A population-based study of genetic variation and psychotic experiences in adolescents. <i>Schizophrenia Bulletin</i> , 2014 , 40, 1254-62	1.3	59
502	Joint Contributions of Rare Copy Number Variants and Common SNPs to Risk for Schizophrenia. <i>American Journal of Psychiatry</i> , 2019 , 176, 29-35	11.9	59
501	Association of Genetic Liability to Psychotic Experiences With Neuropsychotic Disorders and Traits. <i>JAMA Psychiatry</i> , 2019 , 76, 1256-1265	14.5	58
500	GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. <i>Molecular Psychiatry</i> , 2011 , 16, 1117-29	15.1	58
499	Schizophrenia genetics: new insights from new approaches. <i>British Medical Bulletin</i> , 2009 , 91, 61-74	5.4	58
498	Strong evidence that GNB1L is associated with schizophrenia. Human Molecular Genetics, 2008, 17, 555-	65 6	58
497	Chromosome 22q11 deletions, velo-cardio-facial syndrome and early-onset psychosis. Molecular genetic study. <i>British Journal of Psychiatry</i> , 2003 , 183, 409-13	5.4	58
496	Polymorphisms in the MAOA, MAOB, and COMT genes and aggressive behavior in schizophrenia. <i>American Journal of Medical Genetics Part A</i> , 2004 , 128B, 19-20		58
495	Bi-directional changes in the levels of messenger RNAs encoding gamma-aminobutyric acidA receptor alpha subunits after flurazepam treatment. <i>European Journal of Pharmacology</i> , 1992 , 226, 335	-41	58
494	De novo CNVs in bipolar affective disorder and schizophrenia. <i>Human Molecular Genetics</i> , 2014 , 23, 667	7 5 863	57
493	Polygenic dissection of the bipolar phenotype. <i>British Journal of Psychiatry</i> , 2011 , 198, 284-8	5.4	57

492	Association analysis of NOTCH4 loci in schizophrenia using family and population-based controls. <i>Nature Genetics</i> , 2001 , 28, 126-8	36.3	57
491	Common alleles contribute to schizophrenia in CNV carriers. <i>Molecular Psychiatry</i> , 2016 , 21, 1085-9	15.1	56
490	Implication of a rare deletion at distal 16p11.2 in schizophrenia. JAMA Psychiatry, 2013, 70, 253-60	14.5	56
489	The genetics of developmental dyslexia. European Journal of Human Genetics, 2006, 14, 681-9	5.3	56
488	A high proportion of polymorphisms in the promoters of brain expressed genes influences transcriptional activity. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2004 , 1690, 238-49	6.9	56
487	Genome screen for loci influencing age at onset and rate of decline in late onset AlzheimerM disease. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2005 , 135B, 24-32	3.5	56
486	Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank. <i>Journal of Medical Genetics</i> , 2019 , 56, 131-138	5.8	56
485	Additive genetic variation in schizophrenia risk is shared by populations of African and European descent. <i>American Journal of Human Genetics</i> , 2013 , 93, 463-70	11	55
484	A genomewide linkage study of age at onset in schizophrenia. <i>American Journal of Medical Genetics Part A</i> , 2001 , 105, 439-45		55
483	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. <i>American Journal of Human Genetics</i> , 2018 , 102, 1185-1194	11	55
482	Pharmacogenetics of antidepressant response: A polygenic approach. <i>Progress in Neuro-Psychopharmacology and Biological Psychiatry</i> , 2017 , 75, 128-134	5.5	54
481	Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) traits in children and clinical ADHD. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2015 , 54, 322-7	7.2	54
480	Consensus paper of the WFSBP Task Force on Genetics: Genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. <i>World Journal of Biological Psychiatry</i> , 2017 , 18, 5-28	3.8	54
479	The relative contribution of common and rare genetic variants to ADHD. <i>Translational Psychiatry</i> , 2015 , 5, e506	8.6	54
478	Reciprocal duplication of the Williams-Beuren syndrome deletion on chromosome 7q11.23 is associated with schizophrenia. <i>Biological Psychiatry</i> , 2014 , 75, 371-7	7.9	54
477	Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. <i>Molecular Psychiatry</i> , 2009 , 14, 786-95	15.1	54
476	Glycogen synthase kinase-3beta and tau genes interact in Alzheimer disease. <i>Annals of Neurology</i> , 2008 , 64, 446-54	9.4	54
475	Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. <i>Nature Genetics</i> , 2004 , 36, 783-4; author reply 784-5	36.3	54

(2010-2000)

474	APOE epsilon 4 influences the manifestation of AlzheimerMdisease in adults with DownM syndrome. <i>British Journal of Psychiatry</i> , 2000 , 176, 468-72	5.4	54	
473	Psychopathology and cognition in children with 22q11.2 deletion syndrome. <i>British Journal of Psychiatry</i> , 2014 , 204, 46-54	5.4	53	
472	Investigation of the genetic association between quantitative measures of psychosis and schizophrenia: a polygenic risk score analysis. <i>PLoS ONE</i> , 2012 , 7, e37852	3.7	53	
471	Testing for gene x environment interaction effects in attention deficit hyperactivity disorder and associated antisocial behavior. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2008 , 147B, 49-53	3.5	53	
470	Premature mortality among people with severe mental illness - New evidence from linked primary care data. <i>Schizophrenia Research</i> , 2018 , 199, 154-162	3.6	52	
469	The role of the major histocompatibility complex region in cognition and brain structure: a schizophrenia GWAS follow-up. <i>American Journal of Psychiatry</i> , 2013 , 170, 877-85	11.9	51	
468	Polymorphism of the 5-HT transporter and response to antidepressants: randomised controlled trial. <i>British Journal of Psychiatry</i> , 2011 , 198, 464-71	5.4	51	
467	Association analysis of AKT1 and schizophrenia in a UK case control sample. <i>Schizophrenia Research</i> , 2007 , 93, 58-65	3.6	51	
466	Multicenter linkage study of schizophrenia loci on chromosome 22q. Molecular Psychiatry, 2004 , 9, 784	-95 5.1	51	
465	Mutation screening of the Homer gene family and association analysis in schizophrenia. <i>American Journal of Medical Genetics Part A</i> , 2003 , 120B, 18-21		51	
464	Genome-wide association study of multiplex schizophrenia pedigrees. <i>American Journal of Psychiatry</i> , 2012 , 169, 963-73	11.9	50	
463	Factor-derived subsyndromes of schizophrenia and familial morbid risks. <i>Schizophrenia Research</i> , 1997 , 23, 231-8	3.6	50	
462	Localization of bipolar susceptibility locus by molecular genetic analysis of the chromosome 12q23-q24 region in two pedigrees with bipolar disorder and DarierMdisease. <i>American Journal of Psychiatry</i> , 2005 , 162, 35-42	11.9	50	
461	Familial influence on variation in age of onset and behavioural phenotype in AlzheimerMdisease. <i>British Journal of Psychiatry</i> , 2000 , 176, 156-9	5.4	50	
461 460	· · · · · · · · · · · · · · · · · · ·	5.4	50	
	British Journal of Psychiatry, 2000 , 176, 156-9			
460	British Journal of Psychiatry, 2000, 176, 156-9 Searching for schizophrenia genes. Trends in Molecular Medicine, 2001, 7, 169-74 Does Childhood Trauma Moderate Polygenic Risk for Depression? A Meta-analysis of 5765 Subjects	11.5	49	

456	Long repeat tracts at SCA8 in major psychosis. <i>American Journal of Medical Genetics Part A</i> , 2000 , 96, 873-6		48
455	Chromosome workshop: Chromosomes 11, 14, and 15. <i>American Journal of Medical Genetics Part A</i> , 1999 , 88, 244-254		48
454	De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. <i>Nature Neuroscience</i> , 2020 , 23, 179-184	25.5	47
453	P2RX7: A bipolar and unipolar disorder candidate susceptibility gene?. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 1063-9	3.5	47
452	The role of variation at ABP, PSEN1, PSEN2, and MAPT in late onset AlzheimerMdisease. <i>Journal of Alzheimerls Disease</i> , 2012 , 28, 377-87	4.3	47
451	Association between PRODH and schizophrenia is not confirmed. <i>Molecular Psychiatry</i> , 2003 , 8, 644-5	15.1	47
450	No support for association between dyslexia susceptibility 1 candidate 1 and developmental dyslexia. <i>Molecular Psychiatry</i> , 2005 , 10, 237-8	15.1	47
449	Psychiatric disorders in children with 16p11.2 deletion and duplication. <i>Translational Psychiatry</i> , 2019 , 9, 8	8.6	46
448	Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank. <i>British Journal of Psychiatry</i> , 2019 , 214, 297-304	5.4	46
447	Neurocognitive abilities in the general population and composite genetic risk scores for attention-deficit hyperactivity disorder. <i>Journal of Child Psychology and Psychiatry and Allied Disciplines</i> , 2015 , 56, 648-56	7.9	46
446	Analysis of genome-wide association studies of Alzheimer disease and of Parkinson disease to determine if these 2 diseases share a common genetic risk. <i>JAMA Neurology</i> , 2013 , 70, 1268-76	17.2	46
445	DonMgive up on GWAS. <i>Molecular Psychiatry</i> , 2012 , 17, 2-3	15.1	46
444	No association between bipolar disorder and alleles at a functional polymorphism in the COMT gene. Biomed European Bipolar Collaborative Group. <i>British Journal of Psychiatry</i> , 1997 , 170, 526-8	5.4	46
443	A Population-Based Cohort Study Examining the Incidence and Impact of Psychotic Experiences From Childhood to Adulthood, and Prediction of Psychotic Disorder. <i>American Journal of Psychiatry</i> , 2020 , 177, 308-317	11.9	46
442	Adverse effects from antidepressant treatment: randomised controlled trial of 601 depressed individuals. <i>Psychopharmacology</i> , 2014 , 231, 2921-31	4.7	45
441	Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. <i>Translational Psychiatry</i> , 2017 , 7, 1264	8.6	45
440	Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia. <i>Molecular Psychiatry</i> , 2017 , 22, 1502-1508	15.1	45
439	A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. <i>BMC Medicine</i> , 2015 , 13, 86	11.4	45

(2015-2007)

438	Genome-wide linkage analysis of 723 affected relative pairs with late-onset AlzheimerMdisease. <i>Human Molecular Genetics</i> , 2007 , 16, 2703-12	5.6	44
437	Association between a promoter variant in the monoamine oxidase A gene and schizophrenia. <i>Schizophrenia Research</i> , 2003 , 61, 31-7	3.6	44
436	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. <i>International Journal of Epidemiology</i> , 2015 , 44, 1706-21	7.8	43
435	A population-based study of shared genetic variation between premorbid IQ and psychosis among male twin pairs and sibling pairs from Sweden. <i>Archives of General Psychiatry</i> , 2012 , 69, 460-6		43
434	Candidate gene association study of insulin signaling genes and AlzheimerMdisease: evidence for SOS2, PCK1, and PPARgamma as susceptibility loci. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2007 , 144B, 508-16	3.5	43
433	Exclusion of the DarierMdisease gene, ATP2A2, as a common susceptibility gene for bipolar disorder. <i>Molecular Psychiatry</i> , 2001 , 6, 92-7	15.1	43
432	Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: Meta-analysis of data from genome-wide association studies. <i>European Neuropsychopharmacology</i> , 2018 , 28, 945-954	1.2	43
431	Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes. <i>Human Molecular Genetics</i> , 2016 , 25, 1247-54	5.6	42
430	Implications of genetic findings for understanding schizophrenia. Schizophrenia Bulletin, 2012, 38, 904-	7 1.3	42
429	Association of serotonin and dopamine gene pathways with behavioral subphenotypes in dementia. <i>Neurobiology of Aging</i> , 2012 , 33, 791-803	5.6	42
428	A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. <i>Human Molecular Genetics</i> , 2010 , 19, 1379-86	5.6	42
427	Influence of NOS1 on verbal intelligence and working memory in both patients with schizophrenia and healthy control subjects. <i>Archives of General Psychiatry</i> , 2009 , 66, 1045-54		42
426	A functional polymorphism in the succinate-semialdehyde dehydrogenase (aldehyde dehydrogenase 5 family, member A1) gene is associated with cognitive ability. <i>Molecular Psychiatry</i> , 2004 , 9, 582-6	15.1	42
425	CAG repeat length in the hKCa3 gene and symptom dimensions in schizophrenia. <i>Biological Psychiatry</i> , 1999 , 45, 1592-6	7.9	42
424	Shared genetic contribution to Ischaemic Stroke and AlzheimerM Disease. <i>Annals of Neurology</i> , 2016 , 79, 739-747	9.4	42
423	Transdiagnostic dimensions of psychopathology at first episode psychosis: findings from the multinational EU-GEI study. <i>Psychological Medicine</i> , 2019 , 49, 1378-1391	6.9	42
422	Genotype-phenotype associations in children with copy number variants associated with high neuropsychiatric risk in the UK (IMAGINE-ID): a case-control cohort study. <i>Lancet Psychiatry,the</i> , 2019 , 6, 493-505	23.3	41
421	TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport. <i>Nature Communications</i> , 2015 , 6, 7074	17.4	41

420	Neuropsychological effects of the CSMD1 genome-wide associated schizophrenia risk variant rs10503253. <i>Genes, Brain and Behavior</i> , 2013 , 12, 203-9	3.6	41
419	No evidence of association of two 5HT transporter gene polymorphisms and attention deficit hyperactivity disorder. <i>Psychiatric Genetics</i> , 2003 , 13, 107-10	2.9	41
418	No evidence for association between polymorphisms in GRM3 and schizophrenia. <i>BMC Psychiatry</i> , 2005 , 5, 23	4.2	41
417	De novo mutation in schizophrenia. Schizophrenia Bulletin, 2012, 38, 377-81	1.3	40
416	Changes in dopa decarboxylase mRNA but not tyrosine hydroxylase mRNA levels in rat brain following antipsychotic treatment. <i>Psychopharmacology</i> , 1992 , 108, 98-102	4.7	40
415	Variation in tau isoform expression in different brain regions and disease states. <i>Neurobiology of Aging</i> , 2013 , 34, 1922.e7-1922.e12	5.6	39
414	The association between lower educational attainment and depression owing to shared genetic effects? Results in ~25,000 subjects. <i>Molecular Psychiatry</i> , 2015 , 20, 735-43	15.1	39
413	Evaluation of an approximation method for assessment of overall significance of multiple-dependent tests in a genomewide association study. <i>Genetic Epidemiology</i> , 2011 , 35, 861-6	2.6	39
412	Increased familial risk and genomewide significant linkage for Alzheimer Mdisease with psychosis. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2007 , 144B, 841-8	3.5	39
411	Allelic expression of APOE in human brain: effects of epsilon status and promoter haplotypes. <i>Human Molecular Genetics</i> , 2004 , 13, 2885-92	5.6	39
410	Detailed analysis of PRODH and PsPRODH reveals no association with schizophrenia. <i>American Journal of Medical Genetics Part A</i> , 2003 , 120B, 42-6		39
409	Genetic variability at the amyloid-beta precursor protein locus may contribute to the risk of late-onset Alzheimerাধ্ব disease. <i>Neuroscience Letters</i> , 1999 , 269, 67-70	3.3	39
408	Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. <i>Molecular Psychiatry</i> , 2021 , 26, 4496-4510	15.1	39
407	The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. <i>Schizophrenia Bulletin</i> , 2020 , 46, 336-344	1.3	38
406	Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset AlzheimerMdisease. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2007 , 144B, 762-70	3.5	38
405	No association between the putative functional ZDHHC8 single nucleotide polymorphism rs175174 and schizophrenia in large European samples. <i>Biological Psychiatry</i> , 2005 , 58, 78-80	7.9	38
404	Alpha-T-catenin is expressed in human brain and interacts with the Wnt signaling pathway but is not responsible for linkage to chromosome 10 in Alzheimer disease. <i>NeuroMolecular Medicine</i> , 2004 , 5, 133-46	4.6	38
403	Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders. <i>PLoS Genetics</i> , 2016 , 12, e1005993	6	38

(2011-2016)

	402	Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry, the, 2016 , 3, 84-90	23.3	37
	401	The synapse in schizophrenia. <i>European Journal of Neuroscience</i> , 2014 , 39, 1059-67	3.5	37
	400	Steroid sulfatase is a potential modifier of cognition in attention deficit hyperactivity disorder. <i>Genes, Brain and Behavior</i> , 2011 , 10, 334-44	3.6	37
	399	No consistent evidence for association between mtDNA variants and Alzheimer disease. <i>Neurology</i> , 2012 , 78, 1038-42	6.5	37
,	398	Hyperekplexia: abnormal startle response due to glycine receptor mutations. <i>British Journal of Psychiatry</i> , 1997 , 170, 106-8	5.4	37
	397	Exome arrays capture polygenic rare variant contributions to schizophrenia. <i>Human Molecular Genetics</i> , 2016 , 25, 1001-7	5.6	36
	396	Analysis of ProDH, COMT and ZDHHC8 risk variants does not support individual or interactive effects on schizophrenia susceptibility. <i>Schizophrenia Research</i> , 2006 , 87, 21-7	3.6	36
,	395	Clozapine and sulpiride up-regulate dopamine D3 receptor mRNA levels. <i>Neuropharmacology</i> , 1993 , 32, 901-7	5.5	36
	394	Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. <i>Nature Medicine</i> , 2020 , 26, 1912-1918	50.5	35
,	393	Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. <i>Nature Communications</i> , 2018 , 9, 711	17.4	35
	392	Evidence that common variation in NEDD9 is associated with susceptibility to late-onset AlzheimerMand ParkinsonMdisease. <i>Human Molecular Genetics</i> , 2008 , 17, 759-67	5.6	35
,	391	Association analysis of 528 intra-genic SNPs in a region of chromosome 10 linked to late onset AlzheimerMdisease. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2008 , 147B, 727-31	3.5	35
	390	Functional analysis of polymorphisms in the promoter regions of genes on 22q11. <i>Human Mutation</i> , 2004 , 24, 35-42	4.7	35
,	389	Linkage disequilibrium mapping provides further evidence of a gene for reading disability on chromosome 6p21.3-22. <i>Molecular Psychiatry</i> , 2003 , 8, 176-85	15.1	35
	388	Promoter polymorphisms in glutathione-S-transferase genes affect transcription. <i>Pharmacogenetics and Genomics</i> , 2004 , 14, 45-51		35
	387	Dysbindin-1 and schizophrenia: from genetics to neuropathology. <i>Journal of Clinical Investigation</i> , 2004 , 113, 1255-7	15.9	35
	386	Schizophrenia genetic variants are not associated with intelligence. <i>Psychological Medicine</i> , 2013 , 43, 2563-70	6.9	34
	385	Genetic variants in the ErbB4 gene are associated with white matter integrity. <i>Psychiatry Research - Neuroimaging</i> , 2011 , 191, 133-7	2.9	34

384	Genetics of schizophrenia: A consensus paper of the WFSBP Task Force on Genetics. <i>World Journal of Biological Psychiatry</i> , 2017 , 18, 492-505	3.8	33
383	Genetics of schizophrenia. Current Opinion in Behavioral Sciences, 2015, 2, 8-14	4	33
382	Investigating late-onset ADHD: a population cohort investigation. <i>Journal of Child Psychology and Psychiatry and Allied Disciplines</i> , 2018 , 59, 1105-1113	7.9	33
381	Mutation screening of SCN2A in schizophrenia and identification of a novel loss-of-function mutation. <i>Psychiatric Genetics</i> , 2016 , 26, 60-5	2.9	33
380	Psychiatric gene discoveries shape evidence on ADHDM biology. <i>Molecular Psychiatry</i> , 2016 , 21, 1202-7	15.1	33
379	Cyfip1 haploinsufficient rats show white matter changes, myelin thinning, abnormal oligodendrocytes and behavioural inflexibility. <i>Nature Communications</i> , 2019 , 10, 3455	17.4	33
378	Hair Cortisol in Twins: Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes. <i>Scientific Reports</i> , 2017 , 7, 15351	4.9	33
377	Interaction between the gene, body mass index and depression: meta-analysis of 13701 individuals. <i>British Journal of Psychiatry</i> , 2017 , 211, 70-76	5.4	33
376	Complement system biomarkers in first episode psychosis. <i>Schizophrenia Research</i> , 2019 , 204, 16-22	3.6	33
375	Genome-wide analysis of self-reported risk-taking behaviour and cross-disorder genetic correlations in the UK Biobank cohort. <i>Translational Psychiatry</i> , 2018 , 8, 39	8.6	32
374	An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis. <i>Human Molecular Genetics</i> , 2014 , 23, 3316-26	5.6	32
373	Psychopathy traits in adolescents with childhood attention-deficit hyperactivity disorder. <i>British Journal of Psychiatry</i> , 2009 , 194, 62-7	5.4	32
372	Case-control association study of 65 candidate genes revealed a possible association of a SNP of HTR5A to be a factor susceptible to bipolar disease in Bulgarian population. <i>Journal of Affective Disorders</i> , 2009 , 117, 87-97	6.6	32
371	Misconceptions about gene⊞nvironment interactions in psychiatry. <i>Evidence-Based Mental Health</i> , 2011 , 13, 65-68	11.1	32
370	Linked polymorphisms upstream of exons 1 and 2 of the human cholecystokinin gene are not associated with schizophrenia or bipolar disorder. <i>Molecular Psychiatry</i> , 1998 , 3, 67-71	15.1	32
369	Analysis of CAG/CTG repeat size in Chinese subjects with schizophrenia and bipolar affective disorder using the repeat expansion detection method. <i>Biological Psychiatry</i> , 1998 , 44, 1160-5	7.9	32
368	Genetic association of the APP binding protein 2 gene (APBB2) with late onset Alzheimer disease. <i>Human Mutation</i> , 2005 , 25, 270-7	4.7	32
367	Investigating the genetic architecture of general and specific psychopathology in adolescence. Translational Psychiatry, 2018, 8, 145	8.6	31

366	Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity. <i>Scientific Reports</i> , 2017 , 7, 4394	4.9	31	
365	Molecular genetic contribution to the developmental course of attention-deficit hyperactivity disorder. <i>European Child and Adolescent Psychiatry</i> , 2009 , 18, 26-32	5.5	31	
364	No evidence for expanded polyglutamine sequences in bipolar disorder and schizophrenia. <i>Molecular Psychiatry</i> , 1997 , 2, 478-82	15.1	31	
363	Ubiquilin 1 polymorphisms are not associated with late-onset AlzheimerMdisease. <i>Annals of Neurology</i> , 2006 , 59, 21-6	9.4	31	
362	A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in AlzheimerMdisease. <i>Pharmacogenetics and Genomics</i> , 2006 , 16, 75-7	1.9	31	
361	No evidence of association between Catechol-O-Methyltransferase (COMT) Val158Met genotype and performance on neuropsychological tasks in children with ADHD: a case-control study. <i>BMC Psychiatry</i> , 2004 , 4, 15	4.2	31	
360	Genetic abnormalities of chromosome 22 and the development of psychosis. <i>Current Psychiatry Reports</i> , 2004 , 6, 176-82	9.1	31	
359	Sequence variation in the CHAT locus shows no association with late-onset AlzheimerMdisease. <i>Human Genetics</i> , 2003 , 113, 258-67	6.3	31	
358	Investigating the genetic underpinnings of early-life irritability. <i>Translational Psychiatry</i> , 2017 , 7, e1241	8.6	30	
357	Characterisation, mutation detection, and association analysis of alternative promoters and 5MJTRs of the human dopamine D3 receptor gene in schizophrenia. <i>Molecular Psychiatry</i> , 2002 , 7, 493-502	15.1	30	
356	Association studies between risk for late-onset AlzheimerMdisease and variants in insulin degrading enzyme. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2005 , 136B, 62-8	3.5	30	
355	Mutation screening of the KCNN3 gene reveals a rare frameshift mutation. <i>Molecular Psychiatry</i> , 2001 , 6, 259-60	15.1	30	
354	Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS. <i>PLoS Genetics</i> , 2016 , 12, e1005803	6	30	
353	Identifying mechanisms that underlie links between COMT genotype and aggression in male adolescents with ADHD. <i>Journal of Child Psychology and Psychiatry and Allied Disciplines</i> , 2016 , 57, 472-8	8 0 ^{.9}	30	
352	Examining cognition across the bipolar/schizophrenia diagnostic spectrum. <i>Journal of Psychiatry and Neuroscience</i> , 2018 , 43, 245-253	4.5	30	
351	A multi-center study of ACE and the risk of late-onset AlzheimerM disease. <i>Journal of Alzheimerls Disease</i> , 2011 , 24, 587-97	4.3	29	
350	Evidence that putative ADHD low risk alleles at SNAP25 may increase the risk of schizophrenia. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 893-9	3.5	29	
349	Tryptophan hydroxylase gene and manic-depressive illness. <i>Archives of General Psychiatry</i> , 1999 , 56, 98-	9	29	

348	Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. <i>Molecular Psychiatry</i> , 2010 , 15, 1101-11	15.1	28
347	An association study of common variation at the MAPT locus with late-onset Alzheimer disease. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 1152-5	3.5	28
346	Diagnosis of functional psychoses: time to face the future. <i>Lancet, The</i> , 2009 , 373, 190-1	40	28
345	Developmental coordination disorder, psychopathology and IQ in 22q11.2 deletion syndrome. <i>British Journal of Psychiatry</i> , 2018 , 212, 27-33	5.4	27
344	New findings from genetic association studies of schizophrenia. <i>Journal of Human Genetics</i> , 2009 , 54, 9-14	4.3	27
343	Bipolar disorder and variation at a common polymorphism (A1832G) within exon 8 of the Wolfram gene. <i>American Journal of Medical Genetics Part A</i> , 2000 , 96, 154-7		27
342	A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. <i>Human Molecular Genetics</i> , 2020 , 29, 159-167	5.6	27
341	Novel Insight Into the Etiology of Autism Spectrum Disorder Gained by Integrating Expression Data With Genome-wide Association Statistics. <i>Biological Psychiatry</i> , 2019 , 86, 265-273	7.9	26
340	AlzheimerMdisease risk variant in CLU is associated with neural inefficiency in healthy individuals. <i>Alzheimerls and Dementia</i> , 2015 , 11, 1144-52	1.2	26
339	A genome-wide study shows a limited contribution of rare copy number variants to AlzheimerM disease risk. <i>Human Molecular Genetics</i> , 2013 , 22, 816-24	5.6	26
338	A family-based study of common polygenic variation and risk of schizophrenia. <i>Molecular Psychiatry</i> , 2011 , 16, 887-8	15.1	26
337	Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. <i>Journal of Biomedicine and Biotechnology</i> , 2009 , 2009, 536918		26
336	Estimating Effect Sizes and Expected Replication Probabilities from GWAS Summary Statistics. <i>Frontiers in Genetics</i> , 2016 , 7, 15	4.5	26
335	New insights into the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation. <i>Pharmacogenomics Journal</i> , 2018 , 18, 413-421	3.5	26
334	Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia. <i>Translational Psychiatry</i> , 2015 , 5, e607	8.6	25
333	Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case-control sample of schizophrenia. <i>Translational Psychiatry</i> , 2015 , 5, e656	8.6	25
332	Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2016 , 171, 1170-1179	3·5	25
331	What have we learned from the Psychiatric Genomics Consortium. World Psychiatry, 2015, 14, 291-3	14.4	25

(2020-2011)

330	Independent evidence for the selective influence of GABA(A) receptors on one component of the bipolar disorder phenotype. <i>Molecular Psychiatry</i> , 2011 , 16, 587-9	15.1	25
329	Evidence that a DISC1 frame-shift deletion associated with psychosis in a single family may not be a pathogenic mutation. <i>Molecular Psychiatry</i> , 2006 , 11, 798-9	15.1	25
328	Simultaneous quantification of several mRNA species by solution hybridisation with oligonucleotides. <i>Nucleic Acids Research</i> , 1991 , 19, 3466	20.1	25
327	Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. <i>Genome Medicine</i> , 2020 , 12, 43	14.4	24
326	Variability in working memory performance explained by epistasis vs polygenic scores in the ZNF804A pathway. <i>JAMA Psychiatry</i> , 2014 , 71, 778-785	14.5	24
325	Childhood cognitive development in 22q11.2 deletion syndrome: case-control study. <i>British Journal of Psychiatry</i> , 2017 , 211, 223-230	5.4	24
324	Factor structure of autistic traits in children with ADHD. <i>Journal of Autism and Developmental Disorders</i> , 2014 , 44, 204-15	4.6	24
323	Genome-wide association study on bipolar disorder in the Bulgarian population. <i>Genes, Brain and Behavior</i> , 2011 , 10, 789-97	3.6	24
322	Genetic differences between five European populations. <i>Human Heredity</i> , 2010 , 70, 141-9	1.1	24
321	Association study in the 5q31-32 linkage region for schizophrenia using pooled DNA genotyping. <i>BMC Psychiatry</i> , 2008 , 8, 11	4.2	24
320	A regulatory monoamine oxidase a promoter polymorphism and personality traits. <i>Neuropsychobiology</i> , 2002 , 46, 190-3	4	24
319	Streamlined analysis of pooled genotype data in SNP-based association studies. <i>Genetic Epidemiology</i> , 2005 , 28, 273-82	2.6	24
318	Comparative sequencing of the proneurotensin gene and association studies in schizophrenia. <i>Molecular Psychiatry</i> , 2000 , 5, 208-12	15.1	24
317	The high affinity neurotensin receptor gene (NTSR1): comparative sequencing and association studies in schizophrenia. <i>Molecular Psychiatry</i> , 2000 , 5, 552-7	15.1	24
316	Novel loci associated with increased risk of sudden cardiac death in the context of coronary artery disease. <i>PLoS ONE</i> , 2013 , 8, e59905	3.7	24
315	Expansion of 50 CAG/CTG repeats excluded in schizophrenia by application of a highly efficient approach using repeat expansion detection and a PCR screening set. <i>American Journal of Human Genetics</i> , 1996 , 59, 912-7	11	24
314	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. <i>JAMA Psychiatry</i> , 2020 , 77, 420-430	14.5	24
313	Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects. <i>American Journal of Human Genetics</i> , 2020 , 106, 26-40	11	24

312	The genetics of neuropsychiatric disorders. <i>Brain and Neuroscience Advances</i> , 2019 , 2,	4	24
311	Genome-wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2016 , 171B, 276-89	3.5	23
310	The clinical presentation of attention deficit-hyperactivity disorder (ADHD) in children with 22q11.2 deletion syndrome. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2015 , 168, 730-8	3.5	23
309	Clinical and cognitive characteristics of children with attention-deficit hyperactivity disorder, with and without copy number variants. <i>British Journal of Psychiatry</i> , 2011 , 199, 398-403	5.4	23
308	Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer disease. <i>Neuroscience Letters</i> , 2009 , 461, 54-9	3.3	23
307	A comparison of four clustering methods for brain expression microarray data. <i>BMC Bioinformatics</i> , 2008 , 9, 490	3.6	23
306	A family based study implicates solute carrier family 1-member 3 (SLC1A3) gene in attention-deficit/hyperactivity disorder. <i>Biological Psychiatry</i> , 2005 , 57, 1461-6	7.9	23
305	Identification of a potential bipolar risk haplotype in the gene encoding the winged-helix transcription factor RFX4. <i>Molecular Psychiatry</i> , 2005 , 10, 920-7	15.1	23
304	Allelic variation of a Ball polymorphism in the DRD3 gene does not influence susceptibility to bipolar disorder: results of analysis and meta-analysis. <i>American Journal of Medical Genetics Part A</i> , 2001 , 105, 307-11		23
303	Reduced burden of very large and rare CNVs in bipolar affective disorder. <i>Bipolar Disorders</i> , 2013 , 15, 893-8	3.8	22
302	Mutation screening of the 3q29 microdeletion syndrome candidate genes DLG1 and PAK2 in schizophrenia. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2011 , 156B, 844-9	3.5	22
301	Detailed analysis of the relative power of direct and indirect association studies and the implications for their interpretation. <i>Human Heredity</i> , 2007 , 64, 63-73	1.1	22
300	Screening the human protocadherin 8 (PCDH8) gene in schizophrenia. <i>Genes, Brain and Behavior</i> , 2002 , 1, 187-91	3.6	22
299	Experimental analysis of the annotation of promoters in the public database. <i>Human Molecular Genetics</i> , 2002 , 11, 1817-21	5.6	22
298	Pharmacogenomic Variants and Drug Interactions Identified Through the Genetic Analysis of Clozapine Metabolism. <i>American Journal of Psychiatry</i> , 2019 , 176, 477-486	11.9	21
297	Identifying Novel Types of Irritability Using a Developmental Genetic Approach. <i>American Journal of Psychiatry</i> , 2019 , 176, 635-642	11.9	21
296	The ENCODE project: implications for psychiatric genetics. <i>Molecular Psychiatry</i> , 2013 , 18, 540-2	15.1	21
295	The effect of age and the H1c MAPT haplotype on MAPT expression in human brain. <i>Neurobiology of Aging</i> , 2009 , 30, 1652-6	5.6	21

294	Expanded CAG/CTG repeats in bipolar disorder: no correlation with phenotypic measures of illness severity. <i>Biological Psychiatry</i> , 1997 , 42, 876-81	7.9	21
293	Association of Recent Stressful Life Events With Mental and Physical Health in the Context of Genomic and Exposomic Liability for Schizophrenia. <i>JAMA Psychiatry</i> , 2020 , 77, 1296-1304	14.5	21
292	Targeted Sequencing of 10,198 Samples Confirms Abnormalities in Neuronal Activity and Implicates Voltage-Gated Sodium Channels in Schizophrenia Pathogenesis. <i>Biological Psychiatry</i> , 2019 , 85, 554-562	7.9	21
291	A Genetics-First Approach to Dissecting the Heterogeneity of Autism: Phenotypic Comparison of Autism Risk Copy Number Variants. <i>American Journal of Psychiatry</i> , 2021 , 178, 77-86	11.9	21
290	Estimating Exposome Score for Schizophrenia Using Predictive Modeling Approach in Two Independent Samples: The Results From the EUGEI Study. <i>Schizophrenia Bulletin</i> , 2019 , 45, 960-965	1.3	20
289	A neuropsychological investigation of the genome wide associated schizophrenia risk variant NRGN rs12807809. <i>Schizophrenia Research</i> , 2011 , 125, 304-6	3.6	20
288	Mood-incongruent psychosis in bipolar disorder: conditional linkage analysis shows genome-wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. <i>Bipolar Disorders</i> , 2009 , 11, 610-20	3.8	20
287	GENetic and clinical predictors of treatment response in depression: the GenPod randomised trial protocol. <i>Trials</i> , 2008 , 9, 29	2.8	20
286	Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection		20
285	Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. <i>Human Brain Mapping</i> , 2016 , 37, 491-500	5.9	20
284	Reciprocal White Matter Changes Associated With Copy Number Variation at 15q11.2 BP1-BP2: A Diffusion Tensor Imaging Study. <i>Biological Psychiatry</i> , 2019 , 85, 563-572	7.9	20
283	Genetics of self-reported risk-taking behaviour, trans-ethnic consistency and relevance to brain gene expression. <i>Translational Psychiatry</i> , 2018 , 8, 178	8.6	20
282	Schizophrenia two-hit hypothesis in velo-cardio facial syndrome. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2013 , 162B, 177-82	3.5	19
281	Genomic approaches to schizophrenia. <i>Clinical Therapeutics</i> , 2005 , 27 Suppl A, S2-7	3.5	19
280	Variation in the urokinase-plasminogen activator gene does not explain the chromosome 10 linkage signal for late onset AD. <i>American Journal of Medical Genetics Part A</i> , 2004 , 124B, 29-37		19
279	Evidence to suggest biased phenotypes in children with Attention Deficit Hyperactivity Disorder from completely ascertained trios. <i>Molecular Psychiatry</i> , 2002 , 7, 962-6	15.1	19
278	Linkage disequilibrium mapping of bipolar affective disorder at 12q23-q24 provides evidence for association at CUX2 and FLJ32356. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2005 , 132B, 38-45	3.5	19
277	A family based study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD). <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2005 , 133B, 64-7	3.5	19

276	No evidence for association between a non-synonymous polymorphism in the gene encoding human metabotropic glutamate receptor 7 and schizophrenia. <i>Psychiatric Genetics</i> , 2000 , 10, 83-6	2.9	19
275	Levels of GABAa receptor subunit mRNA in rat brain following flurazepam treatment. <i>Journal of Psychopharmacology</i> , 1992 , 6, 364-9	4.6	19
274	Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. <i>Molecular Psychiatry</i> , 2021 , 26, 2070-2081	15.1	19
273	Comparison of Genetic Liability for Sleep Traits Among Individuals With Bipolar Disorder I or II and Control Participants. <i>JAMA Psychiatry</i> , 2020 , 77, 303-310	14.5	19
272	Clinical indicators of treatment-resistant psychosis. <i>British Journal of Psychiatry</i> , 2020 , 216, 259-266	5.4	19
271	Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. <i>BMC Genomics</i> , 2018 , 19, 867	4.5	19
270	MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls. <i>Translational Psychiatry</i> , 2017 , 7, e1012	8.6	18
269	Epilepsy and seizures in young people with 22q11.2 deletion syndrome: Prevalence and links with other neurodevelopmental disorders. <i>Epilepsia</i> , 2019 , 60, 818-829	6.4	18
268	Dynamic expression of genes associated with schizophrenia and bipolar disorder across development. <i>Translational Psychiatry</i> , 2019 , 9, 74	8.6	18
267	Genetically predicted complement component 4A expression: effects on memory function and middle temporal lobe activation. <i>Psychological Medicine</i> , 2018 , 48, 1608-1615	6.9	18
266	Copy number variants and therapeutic response to antidepressant medication in major depressive disorder. <i>Pharmacogenomics Journal</i> , 2014 , 14, 395-9	3.5	18
265	DISC1 exon 11 rare variants found more commonly in schizoaffective spectrum cases than controls. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2011 , 156B, 490-2	3.5	18
264	Severity of depression and response to antidepressants: GENPOD randomised controlled trial. British Journal of Psychiatry, 2012 , 200, 130-6	5.4	18
263	No evidence that rare coding variants in ZNF804A confer risk of schizophrenia. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 1411-6	3.5	18
262	Cis- and trans- loci influence expression of the schizophrenia susceptibility gene DTNBP1. <i>Human Molecular Genetics</i> , 2008 , 17, 1169-74	5.6	18
261	Interaction between the ADAM12 and SH3MD1 genes may confer susceptibility to late-onset AlzheimerMdisease. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2007 , 144B, 448-52	3.5	18
260	Complement factor H Y402H polymorphism is not associated with late-onset Alzheimer Midisease. Neuro Molecular Medicine, 2007 , 9, 331-4	4.6	18
259	Mutation screening and LD mapping in the VCFS deleted region of chromosome 22q11 in schizophrenia using a novel DNA pooling approach. <i>Molecular Psychiatry</i> , 2002 , 7, 1092-100	15.1	18

(2016-2001)

258	Screening ABCG1, the human homologue of the Drosophila white gene, for polymorphisms and association with bipolar affective disorder. <i>Molecular Psychiatry</i> , 2001 , 6, 671-7	15.1	18
257	A genome-wide association study in individuals of African ancestry reveals the importance of the Duffy-null genotype in the assessment of clozapine-related neutropenia. <i>Molecular Psychiatry</i> , 2019 , 24, 328-337	15.1	18
256	Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. <i>Molecular Psychiatry</i> , 2021 , 26, 2457-2470	15.1	17
255	Association of copy number variation across the genome with neuropsychiatric traits in the general population. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2018 , 177, 489-502	3.5	17
254	Functional SNPs are enriched for schizophrenia association signals. <i>Molecular Psychiatry</i> , 2014 , 19, 276-	7 15.1	17
253	Permutation-based approaches do not adequately allow for linkage disequilibrium in gene-wide multi-locus association analysis. <i>European Journal of Human Genetics</i> , 2012 , 20, 890-6	5.3	17
252	A high proportion of chromosome 21 promoter polymorphisms influence transcriptional activity. <i>Gene Expression</i> , 2004 , 11, 233-9	3.4	17
251	Anticipation and repeat expansion in bipolar disorder. <i>American Journal of Medical Genetics Part A</i> , 2003 , 123C, 10-7		17
250	Comparative sequencing and association studies of aromatic L-amino acid decarboxylase in schizophrenia and bipolar disorder. <i>Molecular Psychiatry</i> , 2000 , 5, 327-31	15.1	17
249	CTG18.1 and ERDA-1 CAG/CTG repeat size in bipolar disorder. <i>Neurobiology of Disease</i> , 1999 , 6, 302-7	7.5	17
248	Improving classification of psychoses. <i>Lancet Psychiatry,the</i> , 2016 , 3, 367-74	23.3	17
247	Structural and Functional Neuroimaging of Polygenic Risk for Schizophrenia: A Recall-by-Genotype-Based Approach. <i>Schizophrenia Bulletin</i> , 2019 , 45, 405-414	1.3	17
246	The genomic basis of mood instability: identification of 46 loci in 363,705 UK Biobank participants, genetic correlation with psychiatric disorders, and association with gene expression and function. <i>Molecular Psychiatry</i> , 2020 , 25, 3091-3099	15.1	17
245	Replicated evidence that endophenotypic expression of schizophrenia polygenic risk is greater in healthy siblings of patients compared to controls, suggesting gene-environment interaction. The EUGEI study. <i>Psychological Medicine</i> , 2020 , 50, 1884-1897	6.9	17
244	Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1CMRole in Working Memory. <i>Neuropsychopharmacology</i> , 2017 , 42, 2612-2622	8.7	16
243	Schizophrenia risk variants modulate white matter volume across the psychosis spectrum: evidence from two independent cohorts. <i>NeuroImage: Clinical</i> , 2015 , 7, 764-70	5.3	16
242	POLARIS: Polygenic LD-adjusted risk score approach for set-based analysis of GWAS data. <i>Genetic Epidemiology</i> , 2018 , 42, 366-377	2.6	16
241	Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. <i>BMC Medical Genetics</i> , 2016 , 17, 34	2.1	16

240	Risk variant of oligodendrocyte lineage transcription factor 2 is associated with reduced white matter integrity. <i>Human Brain Mapping</i> , 2013 , 34, 2025-31	5.9	16
239	Mutation intolerant genes and targets of FMRP are enriched for nonsynonymous alleles in schizophrenia. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2017 , 174, 724-73	3 ^{3.5}	16
238	Fine-mapping reveals novel alternative splicing of the dopamine transporter. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 1434-47	3.5	16
237	Genetics and psychiatry. British Journal of Psychiatry, 1997 , 171, 201-2	5.4	16
236	Phorbol ester-induced expression and function of the interleukin 2 receptor in human B lymphocytes. <i>European Journal of Immunology</i> , 1985 , 15, 341-4	6.1	16
235	DCLK1 variants are associated across schizophrenia and attention deficit/hyperactivity disorder. <i>PLoS ONE</i> , 2012 , 7, e35424	3.7	16
234	The impact of schizophrenia and mood disorder risk alleles on emotional problems: investigating change from childhood to middle age. <i>Psychological Medicine</i> , 2018 , 48, 2153-2158	6.9	16
233	Rare coding variants in ten genes confer substantial risk for schizophrenia <i>Nature</i> , 2022 ,	50.4	16
232	Phenotypic Association Analyses With Copy Number Variation in Recurrent Depressive Disorder. <i>Biological Psychiatry</i> , 2016 , 79, 329-36	7.9	15
231	Converging evidence does not support GIT1 as an ADHD risk gene. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2015 , 168, 492-507	3.5	15
230	ADHD and depression: investigating a causal explanation. <i>Psychological Medicine</i> , 2021 , 51, 1890-1897	6.9	15
229	Effects of DTNBP1 genotype on brain development in children. <i>Journal of Child Psychology and Psychiatry and Allied Disciplines</i> , 2011 , 52, 1287-94	7.9	15
228	No evidence that extended tracts of homozygosity are associated with AlzheimerM disease. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2011 , 156B, 764-71	3.5	15
227	Association between TCF4 and schizophrenia does not exert its effect by common nonsynonymous variation or by influencing cis-acting regulation of mRNA expression in adult human brain. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2011 , 156B, 781-4	3.5	15
226	Exclusion of CAG/CTG trinucleotide repeat loci which map to chromosome 4 in bipolar disorder and schizophrenia 1997 , 74, 204-206		15
225	Association analysis of the glial cell line-derived neurotrophic factor (GDNF) gene in schizophrenia. <i>Schizophrenia Research</i> , 2007 , 97, 271-6	3.6	15
224	IGF1, growth pathway polymorphisms and schizophrenia: a pooling study. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2007 , 144B, 117-20	3.5	15
223	Genome wide significant linkage in schizophrenia conditioning on occurrence of depressive episodes. <i>Journal of Medical Genetics</i> , 2006 , 43, 563-7	5.8	15

(2006-1993)

222	Both splicing variants of the dopamine D2 receptor mRNA are up-regulated by antipsychotic drugs. <i>Neuroscience Letters</i> , 1993 , 150, 25-8	3.3	15
221	The genetics of mental retardation. <i>British Journal of Psychiatry</i> , 1994 , 164, 747-58	5.4	15
220	No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study. <i>PLoS Genetics</i> , 2016 , 12, e1006343	6	15
219	Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights		15
218	Using Genetics to Examine a General Liability to Childhood Psychopathology. <i>Behavior Genetics</i> , 2020 , 50, 213-220	3.2	15
217	Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach. <i>American Journal of Medical Genetics Part B:</i> Neuropsychiatric Genetics, 2019 , 180, 80-85	3.5	15
216	Jumping to conclusions, general intelligence, and psychosis liability: findings from the multi-centre EU-GEI case-control study. <i>Psychological Medicine</i> , 2021 , 51, 623-633	6.9	15
215	Genome-wide Association Analysis of ParkinsonM Disease and Schizophrenia Reveals Shared Genetic Architecture and Identifies Novel Risk Loci. <i>Biological Psychiatry</i> , 2021 , 89, 227-235	7.9	15
214	DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. <i>ELife</i> , 2021 , 10,	8.9	15
213	Genome-wide Burden of Rare Short Deletions Is Enriched in Major Depressive Disorder in Four Cohorts. <i>Biological Psychiatry</i> , 2019 , 85, 1065-1073	7.9	14
212	Increasing the Clinical Psychiatric Knowledge Base About Pathogenic Copy Number Variation. <i>American Journal of Psychiatry</i> , 2020 , 177, 204-209	11.9	14
211	The health informatics cohort enhancement project (HICE): using routinely collected primary care data to identify people with a lifetime diagnosis of psychotic disorder. <i>BMC Research Notes</i> , 2012 , 5, 95	2.3	14
210	Response to Mredicting the diagnosis of autism spectrum disorder using gene pathway analysisM <i>Molecular Psychiatry</i> , 2014 , 19, 859-61	15.1	14
209	Genetic classification of populations using supervised learning. <i>PLoS ONE</i> , 2011 , 6, e14802	3.7	14
208	Investigation of rare non-synonymous variants at ABCA13 in schizophrenia and bipolar disorder. <i>Molecular Psychiatry</i> , 2011 , 16, 790-1	15.1	14
207	Variation at the GABAA receptor gene, Rho 1 (GABRR1) associated with susceptibility to bipolar schizoaffective disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 1347-9	3.5	14
206	Exclusion of expansion of 50 CAG/CTG trinucleotide repeats in bipolar disorder. <i>American Journal of Psychiatry</i> , 1997 , 154, 1146-7	11.9	14
205	Investigating cis-acting regulatory variation using assays of relative allelic expression. <i>Psychiatric Genetics</i> , 2006 , 16, 173-7	2.9	14

204	Searching for susceptibility genes in schizophrenia. European Neuropsychopharmacology, 2001, 11, 395-	81.2	14
203	No association between a polymorphic CAG repeat in the human potassium channel gene hKCa3 and bipolar disorder. <i>American Journal of Medical Genetics Part A</i> , 1999 , 88, 57-60		14
202	Expanded CAG/CTG repeats in schizophrenia. A study of clinical correlates. <i>British Journal of Psychiatry</i> , 1996 , 169, 766-71	5.4	14
201	Towards diagnostic markers for the psychoses. <i>Lancet Psychiatry,the</i> , 2016 , 3, 375-85	23.3	14
200	A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies. American Journal of Human Genetics, 2016 , 98, 857-868	11	14
199	Genetic Variation in the Psychiatric Risk Gene CACNA1C Modulates Reversal Learning Across Species. <i>Schizophrenia Bulletin</i> , 2019 , 45, 1024-1032	1.3	14
198	Polygenic risk for circulating reproductive hormone levels and their influence on hippocampal volume and depression susceptibility. <i>Psychoneuroendocrinology</i> , 2019 , 106, 284-292	5	13
197	Genetic predictors of antidepressant side effects: a grouped candidate gene approach in the Genome-Based Therapeutic Drugs for Depression (GENDEP) study. <i>Journal of Psychopharmacology</i> , 2014 , 28, 142-50	4.6	13
196	Investigating the genetic variation underlying episodicity in major depressive disorder: suggestive evidence for a bipolar contribution. <i>Journal of Affective Disorders</i> , 2014 , 155, 81-9	6.6	13
195	Genetic susceptibility for bipolar disorder and response to antidepressants in major depressive disorder. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2014 , 165B, 77-83	3.5	13
194	Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2011 , 156B, 929-40	3.5	13
193	Schizophrenia, CATCH 22 and FISH. British Journal of Psychiatry, 1996, 168, 397-398	5.4	13
192	Schizophrenia copy number variants and associative learning. <i>Molecular Psychiatry</i> , 2017 , 22, 178-182	15.1	12
191	A national population-based e-cohort of people with psychosis (PsyCymru) linking prospectively ascertained phenotypically rich and genetic data to routinely collected records: overview, recruitment and linkage. <i>Schizophrenia Research</i> , 2015 , 166, 131-6	3.6	12
190	Cognitive deficits in childhood, adolescence and adulthood in 22q11.2 deletion syndrome and association with psychopathology. <i>Translational Psychiatry</i> , 2020 , 10, 53	8.6	12
189	Dysbindin modulates brain function during visual processing in children. <i>NeuroImage</i> , 2010 , 49, 817-22	7.9	12
188	Convergent patterns of association between phenylalanine hydroxylase variants and schizophrenia in four independent samples. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2009 , 150B, 560-9	3.5	12
187	An association study of the neurotensin receptor gene with schizophrenia and clozapine response. <i>Schizophrenia Research</i> , 2004 , 66, 193-5	3.6	12

(2021-2002)

186	Streamlined approach to functional analysis of promoter-region polymorphisms. <i>BioTechniques</i> , 2002 , 33, 412, 414, 416 passim	2.5	12
185	Variation in the protocadherin gamma A gene cluster. <i>Genomics</i> , 2003 , 82, 433-40	4.3	12
184	The molecular genetics of schizophrenia. <i>Annals of Medicine</i> , 1996 , 28, 541-6	1.5	12
183	Developmental Contributions of Schizophrenia Risk Alleles and Childhood Peer Victimization to Early-Onset Mental Health Trajectories. <i>American Journal of Psychiatry</i> , 2019 , 176, 36-43	11.9	12
182	Polygenic risk for schizophrenia and season of birth within the UK Biobank cohort. <i>Psychological Medicine</i> , 2019 , 49, 2499-2504	6.9	12
181	Genetic risk for schizophrenia and developmental delay is associated with shape and microstructure of midline white-matter structures. <i>Translational Psychiatry</i> , 2019 , 9, 102	8.6	11
180	A correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed framework. <i>BMC Genomics</i> , 2018 , 19, 494	4.5	11
179	Attention deficit hyperactivity disorder symptoms as antecedents of later psychotic outcomes in 22q11.2 deletion syndrome. <i>Schizophrenia Research</i> , 2019 , 204, 320-325	3.6	11
178	A breakthrough in schizophrenia genetics. <i>JAMA Psychiatry</i> , 2014 , 71, 1319-20	14.5	11
177	Validity of the concept of minor depression in a developing country setting. <i>Journal of Nervous and Mental Disease</i> , 2008 , 196, 22-8	1.8	11
176	Chromosome 22 deletion syndrome and schizophrenia. <i>International Review of Neurobiology</i> , 2006 , 73, 1-27	4.4	11
175	CUX2, a potential regulator of NCAM expression: genomic characterization and analysis as a positional candidate susceptibility gene for bipolar disorder. <i>American Journal of Medical Genetics Part A</i> , 2001 , 105, 295-300		11
174	Genome scans and microarrays: converging on genes for schizophrenia?. <i>Genome Biology</i> , 2002 , 3, REV	′IE₩8S31 ()1 <u>1</u> 11
173	The emergence of psychotic experiences in the early adolescence of 22q11.2 Deletion Syndrome. <i>Journal of Psychiatric Research</i> , 2019 , 109, 10-17	5.2	11
172	Genetic liability to schizophrenia is negatively associated with educational attainment in UK Biobank. <i>Molecular Psychiatry</i> , 2020 , 25, 703-705	15.1	11
171	Age at first birth in women is genetically associated with increased risk of schizophrenia. <i>Scientific Reports</i> , 2018 , 8, 10168	4.9	11
170	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. <i>Biological Psychiatry</i> , 2021 ,	7.9	11
169	Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. <i>Molecular Psychiatry</i> , 2021 , 26, 2082-2088	15.1	10

168	Genome-wide association study of dietary intake in the UK biobank study and its associations with schizophrenia and other traits. <i>Translational Psychiatry</i> , 2020 , 10, 51	8.6	10
167	Mosaic copy number variation in schizophrenia. European Journal of Human Genetics, 2013, 21, 1007-11	5.3	10
166	An examination of single nucleotide polymorphism selection prioritization strategies for tests of gene-gene interaction. <i>Biological Psychiatry</i> , 2011 , 70, 198-203	7.9	10
165	Analysis of neurogranin (NRGN) in schizophrenia. <i>American Journal of Medical Genetics Part B:</i> Neuropsychiatric Genetics, 2011 , 156B, 532-5	3.5	10
164	Association analysis of two candidate phospholipase genes that map to the chromosome 15q15.1-15.3 region associated with reading disability. <i>American Journal of Medical Genetics Part A</i> , 2004 , 129B, 97-103		10
163	Genome wide meta-analysis identifies genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders		10
162	Neurotrophin receptor activation rescues cognitive and synaptic abnormalities caused by hemizygosity of the psychiatric risk gene Cacna1c. <i>Molecular Psychiatry</i> , 2021 , 26, 1748-1760	15.1	10
161	Area deprivation, urbanicity, severe mental illness and social drift - A population-based linkage study using routinely collected primary and secondary care data. <i>Schizophrenia Research</i> , 2020 , 220, 130	o-3·4o	9
160	Analysis of copy number variation using quantitative interspecies competitive PCR. <i>Nucleic Acids Research</i> , 2008 , 36, e112	20.1	9
159	Schizophrenia: complex genetics, not fairy tales. <i>Psychological Medicine</i> , 2008 , 38, 1697-9; discussion 1818-20	6.9	9
158	DISC1 mRNA expression is not influenced by common Cis-acting regulatory polymorphisms or imprinting. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2008 , 147B, 1065-9	3.5	9
157	The future of psychiatric genetics. <i>Annals of Medicine</i> , 2003 , 35, 122-34	1.5	9
156	Repeat sizes at CAG/CTG loci CTG18.1, ERDA1 and TGC13-7a in schizophrenia. <i>Psychiatric Genetics</i> , 2000 , 10, 33-7	2.9	9
155	Advances and retreats in the molecular genetics of major mental illness. <i>Annals of Medicine</i> , 1992 , 24, 171-7	1.5	9
154	A data-driven investigation of relationships between bipolar psychotic symptoms and schizophrenia genome-wide significant genetic loci. <i>American Journal of Medical Genetics Part B:</i> Neuropsychiatric Genetics, 2018 , 177, 468-475	3.5	8
153	Molecular genetics and the relationship between epilepsy and psychosis. <i>British Journal of Psychiatry</i> , 2010 , 197, 75-6; author reply 76	5.4	8
152	The mentally handicapped person with epilepsy: a comparative study investigating psychosocial functioning. <i>Journal of Intellectual Disability Research</i> , 1989 , 33 (Pt 2), 123-35	3.2	8
151	Linkage disequilibrium structure of KIAA0319 and DCDC2, two candidate susceptibility genes for developmental dyslexia. <i>Molecular Psychiatry</i> , 2006 , 11, 1061-1061	15.1	8

150	Comparative genetic architectures of schizophrenia in East Asian and European populations		8
149	Characterization of Single Gene Copy Number Variants in Schizophrenia. <i>Biological Psychiatry</i> , 2020 , 87, 736-744	7.9	8
148	Genetic comorbidity between major depression and cardio-metabolic traits, stratified by age at onset of major depression. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2020 , 183, 309-330	3.5	8
147	Investigating attention-deficit hyperactivity disorder and autism spectrum disorder traits in the general population: What happens in adult life?. <i>Journal of Child Psychology and Psychiatry and Allied Disciplines</i> , 2021 , 62, 449-457	7.9	8
146	Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. <i>Nature Communications</i> , 2021 , 12, 5353	17.4	8
145	Identifying schizophrenia patients who carry pathogenic genetic copy number variants using standard clinical assessment: retrospective cohort study. <i>British Journal of Psychiatry</i> , 2020 , 216, 275-27	·5·4	7
144	. Psychiatric Genetics, 2003 , 13, 107-110	2.9	7
143	Mutational analysis of two positional candidate susceptibility genes for bipolar disorder on chromosome 12q23-q24: phenylalanine hydroxylase and human LIM-homeobox LHX5. <i>Psychiatric Genetics</i> , 2003 , 13, 97-101	2.9	7
142	Recent advances in the genetics of preterm birth. Annals of Human Genetics, 2020, 84, 205-213	2.2	7
141	Genetic association of FMRP targets with psychiatric disorders. <i>Molecular Psychiatry</i> , 2021 , 26, 2977-299	90 5.1	7
140	Associations between schizophrenia genetic risk, anxiety disorders and manic/hypomanic episode in a longitudinal population cohort study. <i>British Journal of Psychiatry</i> , 2019 , 214, 96-102	5.4	7
139	Coordination difficulties, IQ and psychopathology in children with high-risk copy number variants. <i>Psychological Medicine</i> , 2021 , 51, 290-299	6.9	7
138	Effects of MiR-137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2018 , 177, 369-376	3.5	6
137	Is there a schizophrenia to diagnose?. World Psychiatry, 2011 , 10, 34-5	14.4	6
136	Failure to confirm association between PIK4CA and psychosis in 22q11.2 deletion syndrome. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 980-2	3.5	6
135	Symptom dimensions and the Kraepelinian dichotomy. <i>British Journal of Psychiatry</i> , 2007 , 190, 361; author reply 361-2	5.4	6
134	Polymorphisms in the phosphate and tensin homolog gene are not associated with late-onset AlzheimerMdisease. <i>Neuroscience Letters</i> , 2006 , 401, 77-80	3.3	6
133	Involvement of expanded trinucleotide repeats in common diseases. <i>Lancet, The</i> , 1996 , 348, 1739-40	40	6

132	The effects of antidepressant drugs on kainate receptor mRNA levels. <i>Neuropharmacology</i> , 1991 , 30, 675-7	5.5	6
131	Gene expression imputation across multiple brain regions reveals schizophrenia risk throughout devel	opmen	t 6
130	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. <i>Translational Psychiatry</i> , 2021 , 11, 182	8.6	6
129	Lack of Support for the Genes by Early Environment Interaction Hypothesis in the Pathogenesis of Schizophrenia. <i>Schizophrenia Bulletin</i> , 2021 ,	1.3	6
128	Gender differences in CNV burden do not confound schizophrenia CNV associations. <i>Scientific Reports</i> , 2016 , 6, 25986	4.9	6
127	Convergent Evidence That ZNF804A Is a Regulator of Pre-messenger RNA Processing and Gene Expression. <i>Schizophrenia Bulletin</i> , 2019 , 45, 1267-1278	1.3	6
126	The Relationship Between Common Variant Schizophrenia Liability and Number of Offspring in the UK Biobank. <i>American Journal of Psychiatry</i> , 2019 , 176, 661-666	11.9	6
125	Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. <i>Human Brain Mapping</i> , 2021 ,	5.9	6
124	Schizophrenia genetics: building the foundations of the future. <i>Schizophrenia Bulletin</i> , 2015 , 41, 15-9	1.3	5
123	Movement Disorder Phenotypes in Children With 22q11.2 Deletion Syndrome. <i>Movement Disorders</i> , 2020 , 35, 1272-1274	7	5
122	A brief report: de novo copy number variants in children with attention deficit hyperactivity disorder. <i>Translational Psychiatry</i> , 2020 , 10, 135	8.6	5
121	The Relationship Between Common Variant Schizophrenia Liability and Number of Offspring in the UK Biobank: Response to Lawn et al. <i>American Journal of Psychiatry</i> , 2019 , 176, 574-575	11.9	5
120	An examination of MUTED as a schizophrenia susceptibility gene. <i>Schizophrenia Research</i> , 2009 , 107, 110-1	3.6	5
119	Bias in the genomic distribution of CAG and CTG trinucleotide repeats. <i>American Journal of Medical Genetics Part A</i> , 1997 , 74, 62-4		5
118	Phenotypic variation between parent-offspring trios and non-trios in genetic studies of schizophrenia. <i>Journal of Psychiatric Research</i> , 2006 , 40, 622-6	5.2	5
117	Lack of effect of chronic antipsychotic treatment on dopamine D5 receptor mRNA level. <i>European Neuropsychopharmacology</i> , 1992 , 2, 405-9	1.2	5
116	Introducing Selfcite 2.0career enhancing software. <i>BMJ: British Medical Journal</i> , 1996 , 313, 1659-60		5
115	Molecular Genetics and the Kraepelinian Dichotomy: One Disorder, Two Disorders, or Do We Need to Start Thinking Afresh?. <i>Psychiatric Annals</i> , 2010 , 40, 88-91	0.5	5

114	Clozapine Metabolism is Associated With Absolute Neutrophil Count in Individuals With Treatment-Resistant Schizophrenia. <i>Frontiers in Pharmacology</i> , 2021 , 12, 658734	5.6	5	
113	Large-Scale Genomics: A Paradigm Shift in Psychiatry?. <i>Biological Psychiatry</i> , 2021 , 89, 5-7	7.9	5	
112	Rare Copy Number Variants Are Associated With Poorer Cognition in Schizophrenia. <i>Biological Psychiatry</i> , 2021 , 90, 28-34	7.9	5	
111	Reinforcement learning as an intermediate phenotype in psychosis? Deficits sensitive to illness stage but not associated with polygenic risk of schizophrenia in the general population. <i>Schizophrenia Research</i> , 2020 , 222, 389-396	3.6	4	
110	Absence of de novo point mutations in exons of GRIN2B in a large schizophrenia trio sample. <i>Schizophrenia Research</i> , 2012 , 141, 274-6	3.6	4	
109	Mutation screening of the DTNBP1 exonic sequence in 669 schizophrenics and 710 controls using high-resolution melting analysis. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 766-74	3.5	4	
108	Reply to Bertram et al American Journal of Human Genetics, 2006, 79, 183-184	11	4	
107	Genes and Behavior: Nature Nurture Interplay Explained By Michael Rutter. Oxford: Blackwell. 2006. 272pp. £14.99 (pb). ISBN 1405110619. <i>British Journal of Psychiatry</i> , 2006 , 189, 192-193	5.4	4	
106	No evidence of association between HLA-DRB1 and attention deficit hyperactivity disorder. <i>Psychiatric Genetics</i> , 2003 , 13, 183-5	2.9	4	
105	Lack of functional promoter polymorphisms in genes involved in glutamate neurotransmission. <i>Psychiatric Genetics</i> , 2003 , 13, 193-9	2.9	4	
104	Association of genetic liability for psychiatric disorders with accelerometer-assessed physical activity in the UK Biobank. <i>PLoS ONE</i> , 2021 , 16, e0249189	3.7	4	
103	Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms. <i>Translational Psychiatry</i> , 2021 , 11, 313	8.6	4	
102	No Effect of Genome-Wide Significant Schizophrenia Risk Variation at the Locus on the Allelic Expression of in Postmortem Striatum. <i>Molecular Neuropsychiatry</i> , 2019 , 5, 212-217	4.9	4	
101	Prioritizing Genetic Contributors to Cortical Alterations in 22q11.2 Deletion Syndrome Using Imaging Transcriptomics. <i>Cerebral Cortex</i> , 2021 , 31, 3285-3298	5.1	4	
100	The psychiatric phenotypes of 1q21 distal deletion and duplication. <i>Translational Psychiatry</i> , 2021 , 11, 105	8.6	4	
99	Associations Between Schizophrenia Polygenic Liability, Symptom Dimensions, and Cognitive Ability in Schizophrenia. <i>JAMA Psychiatry</i> , 2021 , 78, 1143-1151	14.5	4	
98	A Mendelian randomization study of the causal association between anxiety phenotypes and schizophrenia. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2020 , 183, 360-369.	9 ^{3.5}	3	
97	No Evidence for Enrichment in Schizophrenia for Common Allelic Associations at Imprinted Loci. <i>PLoS ONE</i> , 2015 , 10, e0144172	3.7	3	

96	Direct analysis of the genes encoding G proteins G alpha T2, G alpha o, G alpha Z in ADHD. <i>American Journal of Medical Genetics Part A</i> , 2004 , 127B, 68-72		3
95	Polydactyly and psychosis. Five cases of co-occurrence. <i>British Journal of Psychiatry</i> , 1998 , 172, 184-5	5.4	3
94	Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants <i>Nature Communications</i> , 2022 , 13, 27	17.4	3
93	Sex differences in gene expression in the human fetal brain		3
92	Psychiatric Genomics: An Update and an Agenda		3
91	A genetic investigation of sex bias in the prevalence of attention deficit hyperactivity disorder		3
90	A replication study of JTC bias, genetic liability for psychosis and delusional ideation. <i>Psychological Medicine</i> , 2020 , 1-7	6.9	3
89	HLA-DQB1 6672G>C (rs113332494) is associated with clozapine-induced neutropenia and agranulocytosis in individuals of European ancestry. <i>Translational Psychiatry</i> , 2021 , 11, 214	8.6	3
88	Genome-wide analyses of smoking behaviors in schizophrenia: Findings from the Psychiatric Genomics Consortium. <i>Journal of Psychiatric Research</i> , 2021 , 137, 215-224	5.2	3
87	Clinical evaluation of patients with a neuropsychiatric risk copy number variant. <i>Current Opinion in Genetics and Development</i> , 2021 , 68, 26-34	4.9	3
86	Effects of eight neuropsychiatric copy number variants on human brain structure. <i>Translational Psychiatry</i> , 2021 , 11, 399	8.6	3
85	Developmental Profile of Psychiatric Risk Associated With Voltage-Gated Cation Channel Activity. <i>Biological Psychiatry</i> , 2021 , 90, 399-408	7.9	3
84	Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. <i>Molecular Psychiatry</i> , 2021 , 26, 5239-5250	15.1	3
83	Population-based identity-by-descent mapping combined with exome sequencing to detect rare risk variants for schizophrenia. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2019 , 180, 223-231	3.5	2
82	Examining pathways between genetic liability for schizophrenia and patterns of tobacco and cannabis use in adolescence. <i>Psychological Medicine</i> , 2020 , 1-8	6.9	2
81	Contribution of de novo and inherited rare CNVs to very preterm birth. <i>Journal of Medical Genetics</i> , 2020 , 57, 552-557	5.8	2
80	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. <i>Biological Psychiatry</i> , 2016 , 80, 84-86	7.9	2
79	Psychiatric genetics: whatMnew in 2015?. <i>Lancet Psychiatry,the</i> , 2016 , 3, 10-12	23.3	2

(2021-2019)

78	Using kinematic analyses to explore sensorimotor control impairments in children with 22q11.2 deletion syndrome. <i>Journal of Neurodevelopmental Disorders</i> , 2019 , 11, 8	4.6	2
77	Genome-wide Association Study Identifies Genetic Variation in Neurocan as a Susceptibility Factor for Bipolar Disorder. <i>American Journal of Human Genetics</i> , 2011 , 88, 396	11	2
76	Genetics of schizophrenia. <i>Psychiatry (Abingdon, England)</i> , 2005 , 4, 14-17		2
75	Association analysis of the proneurotensin gene and bipolar disorder. <i>Psychiatric Genetics</i> , 2000 , 10, 51-	-42.9	2
74	No evidence of association from transmission disequilibrium analysis of the hKCa3 gene in bipolar disorder. <i>Bipolar Disorders</i> , 2000 , 2, 328-31	3.8	2
73	Linkage analysis in an autosomal dominant Monular nuclear pulverulentMongenital cataract, mapped to chromosome 13q11-13. <i>Eye</i> , 2000 , 14 (Pt 2), 172-5	4.4	2
72	Association between functional psychosis and expanded CAG/CTG repeats is not explained by health stratification. <i>Psychiatric Genetics</i> , 1998 , 8, 29-32	2.9	2
71	Use of multiple polygenic risk scores for distinguishing schizophrenia-spectrum disorder and affective psychosis categories in a first-episode sample; the EU-GEI study <i>Psychological Medicine</i> , 2022 , 1-10	6.9	2
70	Using genetics to examine a general liability to childhood psychopathology		2
69	Haploinsufficiency of the psychiatric risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms		2
68	Genotype-phenotype relationships in children with copy number variants associated with high neuropsychiatric risk: Findings from the Intellectual Disability & Mental Health: Assessing the Genomic Impact on Neurodevelopment (IMAGINE-ID) study		2
67	The independent and combined influence of schizophrenia polygenic risk score and heavy cannabis use on risk for psychotic disorder: A case-control analysis from the EUGEI study.		2
66	Genome-wide analysis of self-reported risk-taking behaviour and cross-disorder genetic correlations in the UK Biobank cohort		2
65	Assessment of emotions and behaviour by the Developmental Behaviour Checklist in young people with neurodevelopmental CNVs. <i>Psychological Medicine</i> , 2020 , 1-13	6.9	2
64	Evidence, and replication thereof, that molecular-genetic and environmental risks for psychosis impact through an affective pathway. <i>Psychological Medicine</i> , 2020 , 1-13	6.9	2
63	Electrophysiological network alterations in adults with copy number variants associated with high neurodevelopmental risk. <i>Translational Psychiatry</i> , 2020 , 10, 324	8.6	2
62	Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. <i>Molecular Psychiatry</i> , 2021 ,	15.1	2
61	Explaining the missing heritability of psychiatric disorders. World Psychiatry, 2021, 20, 294-295	14.4	2

60	Genome-wide Significant Associations for Cannabis Dependence Severity: Relevance to Psychiatric Disorders. <i>JAMA Psychiatry</i> , 2016 , 73, 443-4	14.5	2
59	Characterisation of age and polarity at onset in bipolar disorder <i>British Journal of Psychiatry</i> , 2021 , 219, 659-669	5.4	2
58	Examining sex differences in neurodevelopmental and psychiatric genetic risk in anxiety and depression. <i>PLoS ONE</i> , 2021 , 16, e0248254	3.7	2
57	Genetic Associations in Schizophrenia269-288		2
56	Novel genetic advances in schizophrenia: an interview with Michael OM onovan. <i>BMC Medicine</i> , 2015 , 13, 181	11.4	1
55	AuthorsMeply. British Journal of Psychiatry, 2014 , 205, 78	5.4	1
54	Non-random mating, parent-of-origin, and maternal-fetal incompatibility effects in schizophrenia. <i>Schizophrenia Research</i> , 2013 , 143, 11-7	3.6	1
53	Exploring the indirect effects of catechol-O-methyltransferase (COMT) genotype on psychotic experiences through cognitive function and anxiety disorders in a large birth cohort of children. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2014 , 165B, 410-20	3.5	1
52	Structural variations in attention-deficit hyperactivity disorder Authors Meply. <i>Lancet, The</i> , 2011 , 377, 378	40	1
51	Association analysis of dynamin-binding protein (DNMBP) on chromosome 10q with late onset AlzheimerMdisease in a large caucasian UK sample. <i>American Journal of Medical Genetics Part B:</i> Neuropsychiatric Genetics, 2009, 150B, 61-4	3.5	1
50	Strong evidence for multiple psychosis susceptibility genes - a rejoinder to Crow. <i>Psychological Medicine</i> , 2009 , 39, 170-1	6.9	1
49	Genetics of schizophrenia. <i>Psychiatry (Abingdon, England)</i> , 2008 , 7, 415-420		1
48	Atypical antipsychotics elevate dopamine D3 but not D1 or D2 receptor mRNA levels in rat brain. <i>European Neuropsychopharmacology</i> , 1992 , 2, 348	1.2	1
47	"Late-onset" ADHD symptoms in young adulthood: Is this ADHD?. <i>Journal of Attention Disorders</i> , 2022 , 10870547211066486	3.7	1
46	Facial Emotion Recognition in Psychosis and Associations With Polygenic Risk for Schizophrenia: Findings From the Multi-Center EU-GEI Case-Control Study <i>Schizophrenia Bulletin</i> , 2022 ,	1.3	1
45	Psychopathology in adults with copy number variants <i>Psychological Medicine</i> , 2022 , 1-8	6.9	1
44	DLG2 knockout reveals neurogenic transcriptional programs underlying neuropsychiatric disorders and cognition		1
43	Pharmacogenomics: A road ahead for precision medicine in psychiatry. <i>Neuron</i> , 2021 ,	13.9	1

42	Characterization of single gene copy number variants in schizophrenia		1
41	Jumping To Conclusions, General Intelligence, And Psychosis Liability: Findings From The Multi-Centre EU-GEI Case-Control Study		1
40	Meta-analysis of Scandinavian Schizophrenia Exomes		1
39	Large-scale analysis of DNA methylation identifies cellular alterations in blood from psychosis patients and molecular biomarkers of treatment-resistant schizophrenia		1
38	Genetics, chance and dysmorphogenesis in schizophrenia. British Journal of Psychiatry, 1994, 165, 694-69	954	1
37	A Developmental Perspective on the Convergence of Genetic Risk Factors for Neuropsychiatric Disorders. <i>Biological Psychiatry</i> , 2020 , 87, 98-99	7.9	1
36	The Duffy-null genotype and risk of infection. Human Molecular Genetics, 2020, 29, 3341-3349	5.6	1
35	Impact of schizophrenia genetic liability on the association between schizophrenia and physical illness: data-linkage study. <i>BJPsych Open</i> , 2020 , 6, e139	5	1
34	Characterization of Age and Polarity at Onset in Bipolar Disorder		1
33	Sex differences in anxiety and depression in children with attention deficit hyperactivity disorder: Investigating genetic liability and comorbidity. <i>American Journal of Medical Genetics Part B:</i> Neuropsychiatric Genetics, 2021 , 186, 412-422	3.5	1
32	Letter to the editor: Is polygenic risk for ParkinsonM disease associated with less risk of first episode psychosis?. <i>Psychological Medicine</i> , 2020 , 50, 173-176	6.9	1
31	5.4 BIOLOGICAL AND EPIDEMIOLOGICAL EXAMINATION OF TRANSDIAGNOSTIC AND SPECIFIC SYMPTOM DIMENSIONS AT PSYCHOSIS ONSET: FINDINGS FROM THE EUGEI STUDY. <i>Schizophrenia Bulletin</i> , 2018 , 44, S7-S7	1.3	1
30	The continuity of effect of schizophrenia polygenic risk score and patterns of cannabis use on transdiagnostic symptom dimensions at first-episode psychosis: findings from the EU-GEI study. <i>Translational Psychiatry</i> , 2021 , 11, 423	8.6	1
29	What makes the psychosis Minical high riskMstate risky: psychosis itself or the co-presence of a non-psychotic disorder?. <i>Epidemiology and Psychiatric Sciences</i> , 2021 , 30, e53	5.1	1
28	Genetic Risk Factors for Schizophrenia. International Journal of Mental Health, 2000, 29, 13-38	1.4	О
27	The dynamic interplay between sleep and mood: an intensive longitudinal study of individuals with bipolar disorder <i>Psychological Medicine</i> , 2022 , 1-10	6.9	Ο
26	Genetic risk for schizophrenia is associated with altered visually-induced gamma band activity: evidence from a population sample stratified polygenic risk. <i>Translational Psychiatry</i> , 2021 , 11, 592	8.6	0
25	Post-partum psychosis and its association with bipolar disorder in the UK: a case-control study using polygenic risk scores. <i>Lancet Psychiatry,the</i> , 2021 , 8, 1045-1052	23.3	0

24	Risk Factors, Clinical Features, and Polygenic Risk Scores in Schizophrenia and Schizoaffective Disorder Depressive-Type. <i>Schizophrenia Bulletin</i> , 2021 , 47, 1375-1384	1.3	O
23	Association of Antihypertensive Drug Target Genes With Psychiatric Disorders: A Mendelian Randomization Study. <i>JAMA Psychiatry</i> , 2021 , 78, 623-631	14.5	O
22	Investigation of convergent and divergent genetic influences underlying schizophrenia and alcohol use disorder. <i>Psychological Medicine</i> , 2021 , 1-9	6.9	O
21	Examining facial emotion recognition as an intermediate phenotype for psychosis: Findings from the EUGEI study. <i>Progress in Neuro-Psychopharmacology and Biological Psychiatry</i> , 2022 , 113, 110440	5.5	O
20	Complement C3 and C3aR mediate different aspects of emotional behaviours; relevance to risk for psychiatric disorder. <i>Brain, Behavior, and Immunity</i> , 2022 , 99, 70-82	16.6	О
19	Global Brain Flexibility During Working Memory Is Reduced in a High-Genetic-Risk Group for Schizophrenia. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2021 , 6, 1176-1184	3.4	O
18	Schizophrenia polygenic risk score and psychotic risk detection-AuthorsMeply. <i>Lancet Psychiatry,the</i> , 2017 , 4, 188-189	23.3	
17	ISDN2014_0211: An fMRI study of facial emotion processing in children and adolescents with 22q11.2 deletion syndrome. <i>International Journal of Developmental Neuroscience</i> , 2015 , 47, 63-63	2.7	
16	Response to letter to editor: "Knowing when and how to use epilepsy screening questionnaires". <i>Epilepsia</i> , 2020 , 61, 826-827	6.4	
15	Pamela Sklar 1959-2017. Nature Neuroscience, 2018 , 21, 151	25.5	
15 14	Pamela Sklar 1959-2017. <i>Nature Neuroscience</i> , 2018 , 21, 151 Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2017 , 174, 767-771	25.5 3.5	
	Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar		
14	Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2017 , 174, 767-771 [P2110]: NOVEL APPROACH TO GENE-BASED ANALYSIS OF ALZHEIMERM DISEASE INFORMED BY		
14	Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2017 , 174, 767-771 [P2110]: NOVEL APPROACH TO GENE-BASED ANALYSIS OF ALZHEIMERM DISEASE INFORMED BY GENETICS OF PSYCHIATRIC DISORDERS 2017 , 13, P649-P649		
14 13	Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2017 , 174, 767-771 [P2[10]: NOVEL APPROACH TO GENE-BASED ANALYSIS OF ALZHEIMERM DISEASE INFORMED BY GENETICS OF PSYCHIATRIC DISORDERS 2017 , 13, P649-P649 The Genetics of Schizophrenia 2011 , 109-140 Tryptophan pyrrolase gene expression in an alcohol preferring and non-preferring mouse strain.	3.5	
14 13 12	Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2017 , 174, 767-771 [P2110]: NOVEL APPROACH TO GENE-BASED ANALYSIS OF ALZHEIMERM DISEASE INFORMED BY GENETICS OF PSYCHIATRIC DISORDERS 2017 , 13, P649-P649 The Genetics of Schizophrenia 2011 , 109-140 Tryptophan pyrrolase gene expression in an alcohol preferring and non-preferring mouse strain. <i>Addiction Biology</i> , 1998 , 3, 71-7	3.5	
14 13 12 11	Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 767-771 [P2I10]: NOVEL APPROACH TO GENE-BASED ANALYSIS OF ALZHEIMERM DISEASE INFORMED BY GENETICS OF PSYCHIATRIC DISORDERS 2017, 13, P649-P649 The Genetics of Schizophrenia 2011, 109-140 Tryptophan pyrrolase gene expression in an alcohol preferring and non-preferring mouse strain. Addiction Biology, 1998, 3, 71-7 Neurogenetics167-180	3.5	

LIST OF PUBLICATIONS

6	The expression of neuroreceptor genes and benzodiazepine tolerance. <i>Clinical Neuropharmacology</i> , 1992 , 15 Suppl 1 Pt A, 218A-219A	1.4
5	Genes for schizophrenia and beyond 2006 , 119-126	
4	Sib-pairs with psychosis. <i>Psychiatric Bulletin</i> , 1996 , 20, 443-443	
3	Schizophrenia and Bipolar Disorder 2013 , 1051-1058	
2	Pilot study to establish a prospective neonatal cohort: Study of Preterm Infants and Neurodevelopmental Genes (SPRING). <i>BMJ Paediatrics Open</i> , 2020 , 4, e000648	2.4
1	Mental Health Research, shared goals. <i>Journal of Mental Health</i> , 2021 , 1	2.7