
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/992167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007, 447, 661-678.	13.7	8,895
2	A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 1993, 72, 971-983.	13.5	7,960
3	Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511, 421-427.	13.7	6,934
4	Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 2009, 460, 748-752.	13.7	4,345
5	Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491, 119-124.	13.7	4,038
6	LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 2015, 47, 291-295.	9.4	3,905
7	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	9.4	3,741
8	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.	9.4	2,697
9	Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet, The, 2013, 381, 1371-1379.	6.3	2,643
10	Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 2014, 515, 209-215.	13.7	2,254
11	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.	9.4	2,224
12	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	9.4	2,067
13	Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes. Science, 2007, 316, 1336-1341.	6.0	2,040
14	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
15	Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 2011, 43, 969-976.	9.4	1,758
16	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	9.4	1,708
17	De novo mutations in schizophrenia implicate synaptic networks. Nature, 2014, 506, 179-184.	13.7	1,510
18	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	9.4	1,395

MICHAEL C O'DONOVAN

#	Article	IF	CITATIONS
19	Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 2008, 455, 237-241.	13.7	1,387
20	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 2018, 50, 381-389.	9.4	1,332
21	Schizophrenia. Lancet, The, 2016, 388, 86-97.	6.3	1,328
22	Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genetics, 2007, 39, 1329-1337.	9.4	1,298
23	Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics, 2011, 43, 977-983.	9.4	1,283
24	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	9.4	1,191
25	Genome-wide association study identifies eight loci associated with blood pressure. Nature Genetics, 2009, 41, 666-676.	9.4	1,104
26	Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics, 2008, 40, 1056-1058.	9.4	1,102
27	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	2.6	1,098
28	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
29	Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia. American Journal of Human Genetics, 2003, 73, 34-48.	2.6	1,072
30	Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease. JAMA - Journal of the American Medical Association, 2010, 303, 1832.	3.8	1,064
31	Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nature Reviews Genetics, 2012, 13, 537-551.	7.7	1,025
32	The UK10K project identifies rare variants in health and disease. Nature, 2015, 526, 82-90.	13.7	1,014
33	A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 2013, 18, 497-511.	4.1	1,002
34	Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 2008, 40, 1053-1055.	9.4	977
35	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	13.5	935
36	High Rates of Schizophrenia in Adults With Velo-Cardio-Facial Syndrome. Archives of General Psychiatry, 1999, 56, 940.	13.8	928

#	Article	IF	CITATIONS
37	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	9.4	838
38	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
39	De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Molecular Psychiatry, 2012, 17, 142-153.	4.1	775
40	Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 2010, 464, 713-720.	13.7	737
41	Schizophrenia. Nature Reviews Disease Primers, 2015, 1, 15067.	18.1	724
42	Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nature Genetics, 1999, 21, 271-277.	9.4	697
43	Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics, 2009, 41, 1223-1227.	9.4	646
44	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.	13.5	623
45	Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases. American Journal of Human Genetics, 2014, 95, 535-552.	2.6	569
46	High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nature Genetics, 2012, 44, 1336-1340.	9.4	558
47	Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet, The, 2003, 361, 417-419.	6.3	553
48	DNA Pooling: a tool for large-scale association studies. Nature Reviews Genetics, 2002, 3, 862-871.	7.7	534
49	Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Human Molecular Genetics, 2006, 15, 2276-2284.	1.4	519
50	Psychiatric Genomics: An Update and an Agenda. American Journal of Psychiatry, 2018, 175, 15-27.	4.0	518
51	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	6.0	516
52	Discovery and Statistical Genotyping of Copy-Number Variation from Whole-Exome Sequencing Depth. American Journal of Human Genetics, 2012, 91, 597-607.	2.6	513
53	The Kraepelinian dichotomy – going, going … but still not gone. British Journal of Psychiatry, 2010, 196, 92-95.	1.7	498
54	Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 2018, 50, 825-833.	9.4	497

4

#	Article	IF	CITATIONS
55	Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature, 2007, 450, 887-892.	13.7	493
56	Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 2013, 150, 3-10.	1.1	491
57	Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet, The, 2010, 376, 1401-1408.	6.3	485
58	The genetics of schizophrenia and bipolar disorder: dissecting psychosis. Journal of Medical Genetics, 2005, 42, 193-204.	1.5	479
59	The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular Psychiatry, 2010, 15, 1016-1022.	4.1	458
60	Candidate Single-Nucleotide Polymorphisms From a Genomewide Association Study of Alzheimer Disease. Archives of Neurology, 2008, 65, 45-53.	4.9	443
61	Comparative genetic architectures of schizophrenia in East Asian and European populations. Nature Genetics, 2019, 51, 1670-1678.	9.4	440
62	Genes for Schizophrenia and Bipolar Disorder? Implications for Psychiatric Nosology. Schizophrenia Bulletin, 2005, 32, 9-16.	2.3	435
63	Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nature Genetics, 2015, 47, 1385-1392.	9.4	431
64	Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 884-897.	0.3	423
65	Improved Detection of Common Variants Associated with Schizophrenia by Leveraging Pleiotropy with Cardiovascular-Disease Risk Factors. American Journal of Human Genetics, 2013, 92, 197-209.	2.6	422
66	Neurodevelopmental hypothesis of schizophrenia. British Journal of Psychiatry, 2011, 198, 173-175.	1.7	417
67	The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biological Psychiatry, 2017, 81, 9-20.	0.7	416
68	Altering the course of schizophrenia: progress and perspectives. Nature Reviews Drug Discovery, 2016, 15, 485-515.	21.5	410
69	Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nature Genetics, 2018, 50, 538-548.	9.4	406
70	Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nature Genetics, 2017, 49, 1576-1583.	9.4	395
71	Genomewide Association Studies: History, Rationale, and Prospects for Psychiatric Disorders. American Journal of Psychiatry, 2009, 166, 540-556.	4.0	391
72	Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nature Neuroscience, 2016, 19, 571-577.	7.1	388

#	Article	IF	CITATIONS
73	Analysis of copy number variations at 15 schizophrenia-associated loci. British Journal of Psychiatry, 2014, 204, 108-114.	1.7	380
74	Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Human Molecular Genetics, 2009, 18, 1497-1503.	1.4	378
75	Susceptibility Locus for Alzheimer's Disease on Chromosome 10. Science, 2000, 290, 2304-2305.	6.0	372
76	Identifying Relationships among Genomic Disease Regions: Predicting Genes at Pathogenic SNP Associations and Rare Deletions. PLoS Genetics, 2009, 5, e1000534.	1.5	371
77	Gene Ontology Analysis of GWA Study Data Sets Provides Insights into the Biology of Bipolar Disorder. American Journal of Human Genetics, 2009, 85, 13-24.	2.6	367
78	Rheumatoid arthritis association at 6q23. Nature Genetics, 2007, 39, 1431-1433.	9.4	361
79	Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Molecular Psychiatry, 2012, 17, 887-905.	4.1	355
80	Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nature Genetics, 2017, 49, 152-156.	9.4	350
81	Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease. PLoS ONE, 2010, 5, e13950.	1.1	347
82	Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Human Molecular Genetics, 2007, 17, 458-465.	1.4	344
83	Blind Analysis of Denaturing High-Performance Liquid Chromatography as a Tool for Mutation Detection. Genomics, 1998, 52, 44-49.	1.3	334
84	Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Molecular Psychiatry, 2014, 19, 1017-1024.	4.1	333
85	The beginning of the end for the Kraepelinian dichotomy. British Journal of Psychiatry, 2005, 186, 364-366.	1.7	330
86	Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Molecular Psychiatry, 2009, 14, 252-260.	4.1	330
87	Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature, 2022, 604, 509-516.	13.7	326
88	A Haplotype Implicated in Schizophrenia Susceptibility Is Associated with Reduced COMT Expression in Human Brain. American Journal of Human Genetics, 2003, 73, 152-161.	2.6	323
89	Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Molecular Psychiatry, 2013, 18, 1225-1234.	4.1	321
90	The Penetrance of Copy Number Variations for Schizophrenia and Developmental Delay. Biological Psychiatry, 2014, 75, 378-385.	0.7	321

#	Article	IF	CITATIONS
91	Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2013, 54, 686-694.	3.1	307
92	Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nature Neuroscience, 2016, 19, 48-54.	7.1	306
93	Genome-Wide Association Identifies a Common Variant in the Reelin Gene That Increases the Risk of Schizophrenia Only in Women. PLoS Genetics, 2008, 4, e28.	1.5	302
94	Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nature Communications, 2015, 6, 8111.	5.8	300
95	Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate. PLoS Genetics, 2013, 9, e1003455.	1.5	298
96	The molecular genetics of schizophrenia: new findings promise new insights. Molecular Psychiatry, 2004, 9, 14-27.	4.1	293
97	Cognitive mechanisms underlying reading and spelling development in five European orthographies. Learning and Instruction, 2014, 29, 65-77.	1.9	293
98	Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: Implications for 22q11 deletion syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7729-7734.	3.3	289
99	Evaluating historical candidate genes for schizophrenia. Molecular Psychiatry, 2015, 20, 555-562.	4.1	281
100	Schizophrenia: genes at last?. Trends in Genetics, 2005, 21, 518-525.	2.9	278
101	All SNPs Are Not Created Equal: Genome-Wide Association Studies Reveal a Consistent Pattern of Enrichment among Functionally Annotated SNPs. PLoS Genetics, 2013, 9, e1003449.	1.5	268
102	Optimal Temperature Selection for Mutation Detection by Denaturing HPLC and Comparison to Single-Stranded Conformation Polymorphism and Heteroduplex Analysis. Clinical Chemistry, 1999, 45, 1133-1140.	1.5	264
103	Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nature Genetics, 1999, 21, 71-72.	9.4	260
104	Strong Evidence That KIAA0319 on Chromosome 6p Is a Susceptibility Gene for Developmental Dyslexia. American Journal of Human Genetics, 2005, 76, 581-591.	2.6	260
105	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	4.1	260
106	Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Medicine, 2009, 1, 102.	3.6	259
107	Genome-wide Association Study Identifies Genetic Variation in Neurocan as a Susceptibility Factor for Bipolar Disorder. American Journal of Human Genetics, 2011, 88, 372-381.	2.6	257
108	Copy number variation in schizophrenia in Sweden. Molecular Psychiatry, 2014, 19, 762-773.	4.1	257

#	Article	IF	CITATIONS
109	Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. Human Molecular Genetics, 2007, 16, 865-873.	1.4	256
110	Genetic Risk for Schizophrenia: Convergence on Synaptic Pathways Involved in Plasticity. Biological Psychiatry, 2015, 77, 52-58.	0.7	256
111	Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Molecular Psychiatry, 2011, 16, 429-441.	4.1	250
112	Methylomic trajectories across human fetal brain development. Genome Research, 2015, 25, 338-352.	2.4	250
113	The Genetic Deconstruction of Psychosis. Schizophrenia Bulletin, 2007, 33, 905-911.	2.3	242
114	Genome-Wide Analysis of Copy Number Variants in Attention Deficit Hyperactivity Disorder: The Role of Rare Variants and Duplications at 15q13.3. American Journal of Psychiatry, 2012, 169, 195-204.	4.0	242
115	Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Molecular Psychiatry, 2009, 14, 774-785.	4.1	235
116	Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Human Molecular Genetics, 2011, 20, 387-391.	1.4	233
117	Operation of the Schizophrenia Susceptibility Gene, Neuregulin 1, Across Traditional Diagnostic Boundaries to Increase Risk for Bipolar Disorder. Archives of General Psychiatry, 2005, 62, 642.	13.8	232
118	Identifying Gene-Environment Interactions in Schizophrenia: Contemporary Challenges for Integrated, Large-scale Investigations. Schizophrenia Bulletin, 2014, 40, 729-736.	2.3	229
119	Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Molecular Psychiatry, 2003, 8, 485-487.	4.1	226
120	Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. American Journal of Human Genetics, 2015, 96, 283-294.	2.6	225
121	Schizophrenia and the neurodevelopmental continuum:evidence from genomics. World Psychiatry, 2017, 16, 227-235.	4.8	221
122	Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci. Molecular Psychiatry, 2016, 21, 749-757.	4.1	220
123	Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Molecular Psychiatry, 2013, 18, 708-712.	4.1	216
124	Cis-acting variation in the expression of a high proportion of genes in human brain. Human Genetics, 2003, 113, 149-153.	1.8	213
125	Expanded CAG repeats in schizophrenia and bipolar disorder. Nature Genetics, 1995, 10, 380-381.	9.4	212
126	Functional analysis of human promoter polymorphisms. Human Molecular Genetics, 2003, 12, 2249-2254.	1.4	212

8

#	Article	IF	CITATIONS
127	Neurexin 1 (NRXN1) Deletions in Schizophrenia. Schizophrenia Bulletin, 2009, 35, 851-854.	2.3	211
128	Identification of Pathways for Bipolar Disorder. JAMA Psychiatry, 2014, 71, 657.	6.0	204
129	Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder. Schizophrenia Bulletin, 2014, 40, 504-515.	2.3	204
130	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 2016, 19, 420-431.	7.1	204
131	The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Molecular Psychiatry, 2006, 11, 446-458.	4.1	203
132	The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nature Genetics, 2017, 49, 1167-1173.	9.4	200
133	Schizophrenia Linkage Collaborative Group III **The Schizophrenia Linkage Collaborative Group III includes all authors, who are listed in the following order: study coordinators (Levinson, Holmans), principal investigators of each research group (Straub, Owen, Wildenauer, Gejman, Pulver, Laurent), and additional authors from each group, with groups listed according to the number of pedigrees	2.6	199
134	contributed. Partic. American Journal of Human Genetics, 2000, 67, 652-663 A Replicated Molecular Genetic Basis for Subtyping Antisocial Behavior in Children With Attention-Deficit/Hyperactivity Disorder. Archives of General Psychiatry, 2008, 65, 203.	13.8	197
135	Genetics of psychosis; insights from views across the genome. Human Genetics, 2009, 126, 3-12.	1.8	197
136	Phenotypic Manifestation of Genetic Risk for Schizophrenia During Adolescence in the General Population. JAMA Psychiatry, 2016, 73, 221.	6.0	197
137	Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Molecular Psychiatry, 2011, 16, 286-292.	4.1	195
138	Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities. JAMA Psychiatry, 2016, 73, 20.	6.0	195
139	Full genome screen for Alzheimer disease: Stage II analysis. American Journal of Medical Genetics Part A, 2002, 114, 235-244.	2.4	194
140	Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Human Molecular Genetics, 2011, 20, 4076-4081.	1.4	193
141	Psychosis Genetics: Modeling the Relationship Between Schizophrenia, Bipolar Disorder, and Mixed (or "Schizoaffective") Psychoses. Schizophrenia Bulletin, 2009, 35, 482-490.	2.3	191
142	The genetics of attention deficit hyperactivity disorder. Human Molecular Genetics, 2005, 14, R275-R282.	1.4	189
143	Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Medicine, 2014, 6, 29.	3.6	189
144	Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in Neurobiology, 2015, 134, 36-54.	2.8	187

#	Article	IF	CITATIONS
145	GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. American Journal of Psychiatry, 2019, 176, 651-660.	4.0	186
146	Wake-up call for British psychiatry. British Journal of Psychiatry, 2008, 193, 6-9.	1.7	183
147	Genomewide Linkage Scan in Schizoaffective Disorder. Archives of General Psychiatry, 2005, 62, 1081.	13.8	177
148	Identification in 2 Independent Samples of a Novel Schizophrenia RiskHaplotype of the Dystrobrevin Binding Protein Gene (DTNBP1). Archives of General Psychiatry, 2004, 61, 336.	13.8	175
149	Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Human Molecular Genetics, 2005, 14, 1947-1954.	1.4	175
150	Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Biological Psychiatry, 2017, 81, 325-335.	0.7	175
151	Investigating the Contribution of Common Genetic Variants to the Risk and Pathogenesis of ADHD. American Journal of Psychiatry, 2012, 169, 186-194.	4.0	174
152	Genetic Association of Major Depression With Atypical Features and Obesity-Related Immunometabolic Dysregulations. JAMA Psychiatry, 2017, 74, 1214.	6.0	174
153	Rare Copy Number Variants <subtitle>A Point of Rarity in Genetic Risk for Bipolar Disorder and Schizophrenia</subtitle> <alt-title>Rare Copy Number Variants</alt-title> . Archives of General Psychiatry, 2010, 67, 318.	13.8	173
154	Novel Findings from CNVs Implicate Inhibitory and Excitatory Signaling Complexes in Schizophrenia. Neuron, 2015, 86, 1203-1214.	3.8	173
155	Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Molecular Psychiatry, 2015, 20, 207-214.	4.1	173
156	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.4	173
157	Catechol O-Methyltransferase Gene Variant and Birth Weight Predict Early-Onset Antisocial Behavior in Children With Attention-Deficit/Hyperactivity Disorder. Archives of General Psychiatry, 2005, 62, 1275.	13.8	171
158	Cognitive Performance Among Carriers of Pathogenic Copy Number Variants: Analysis of 152,000 UK Biobank Subjects. Biological Psychiatry, 2017, 82, 103-110.	0.7	168
159	Additional support for schizophrenia linkage on chromosomes 6 and 8: A multicenter study. , 1996, 67, 580-594.		166
160	Logic and justification for dimensional assessment of symptoms and related clinical phenomena in psychosis: Relevance to DSM-5. Schizophrenia Research, 2013, 150, 15-20.	1.1	165
161	Genotype effects of <i>CHRNA7, CNR1</i> and <i>COMT</i> in schizophrenia: interactions with tobacco and cannabis use . British Journal of Psychiatry, 2007, 191, 402-407.	1.7	164
162	Evidence that duplications of 22q11.2 protect against schizophrenia. Molecular Psychiatry, 2014, 19, 37-40.	4.1	163

#	Article	IF	CITATIONS
163	Cheap, accurate and rapid allele frequency estimation of single nucleotide polymorphisms by primer extension and DHPLC in DNA pools. Human Genetics, 2000, 107, 488-493.	1.8	162
164	Association of the Dopamine D4Receptor Gene 7-Repeat Allele With Neuropsychological Test Performance of Children With ADHD. American Journal of Psychiatry, 2004, 161, 133-138.	4.0	162
165	Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 96-101.	1.1	162
166	A genome-wide association study for late-onset Alzheimer's disease using DNA pooling. BMC Medical Genomics, 2008, 1, 44.	0.7	162
167	Universal, robust, highly quantitative SNP allele frequency measurement in DNA pools. Human Genetics, 2002, 110, 471-478.	1.8	159
168	A Scan of Chromosome 10 Identifies a Novel Locus Showing Strong Association with Late-Onset Alzheimer Disease. American Journal of Human Genetics, 2006, 78, 78-88.	2.6	157
169	Is COMT a Susceptibility Gene for Schizophrenia?. Schizophrenia Bulletin, 2007, 33, 635-641.	2.3	157
170	Agreement between maternal report and antenatal records for a range of pre and peri-natal factors: The influence of maternal and child characteristics. Early Human Development, 2007, 83, 497-504.	0.8	157
171	Structural brain abnormalities associated with deletion at chromosome 22q11. British Journal of Psychiatry, 2001, 178, 412-419.	1.7	156
172	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	1.1	155
173	Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics, 2019, 51, 659-674.	9.4	154
174	Genome-Wide Association Study of Schizophrenia in a Japanese Population. Biological Psychiatry, 2011, 69, 472-478.	0.7	152
175	Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Molecular Psychiatry, 2012, 17, 996-1006.	4.1	151
176	Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Molecular Psychiatry, 2011, 16, 2-4.	4.1	150
177	Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia. Translational Psychiatry, 2017, 7, e1155-e1155.	2.4	150
178	Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biological Psychiatry, 2004, 55, 971-975.	0.7	149
179	Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT1B receptor gene in 273 nuclear families from a multi-centre sample. Molecular Psychiatry, 2002, 7, 718-725.	4.1	148
180	Copy number variation in bipolar disorder. Molecular Psychiatry, 2016, 21, 89-93.	4.1	147

#	Article	IF	CITATIONS
181	A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2018, 83, 1044-1053.	0.7	146
182	Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease. Circulation, 2015, 131, 2061-2069.	1.6	145
183	Paternal age and risk for schizophrenia. British Journal of Psychiatry, 2003, 183, 405-408.	1.7	143
184	Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry,the, 2016, 3, 77-83.	3.7	143
185	Whole genome linkage scan of recurrent depressive disorder from the depression network study. Human Molecular Genetics, 2005, 14, 3337-3345.	1.4	142
186	Genetic Risk for Attention-Deficit/Hyperactivity Disorder Contributes to Neurodevelopmental Traits in the General Population. Biological Psychiatry, 2014, 76, 664-671.	0.7	142
187	Adolescent clinical outcomes for young people with attention-deficit hyperactivity disorder. British Journal of Psychiatry, 2010, 196, 235-240.	1.7	141
188	Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 2006, 11, 1085-1091.	4.1	140
189	Variation at the DAOA/G30 Locus Influences Susceptibility to Major Mood Episodes but Not Psychosis in Schizophrenia and Bipolar Disorder. Archives of General Psychiatry, 2006, 63, 366.	13.8	138
190	A Comprehensive Family-Based Replication Study of Schizophrenia Genes. JAMA Psychiatry, 2013, 70, 573.	6.0	138
191	Recent advances in the genetics of schizophrenia. Human Molecular Genetics, 2003, 12, R125-R133.	1.4	135
192	The implications of the shared genetics of psychiatric disorders. Nature Medicine, 2016, 22, 1214-1219.	15.2	135
193	Meta-analysis of COMT val158met in panic disorder: Ethnic heterogeneity and gender specificity. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 667-673.	1.1	134
194	Accurately Assessing the Risk of Schizophrenia Conferred by Rare Copy-Number Variation Affecting Genes with Brain Function. PLoS Genetics, 2010, 6, e1001097.	1.5	134
195	A genome-wide association study in 574 schizophrenia trios using DNA pooling. Molecular Psychiatry, 2009, 14, 796-803.	4.1	133
196	Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus. Molecular Psychiatry, 2015, 20, 1588-1595.	4.1	133
197	ATP2A2 Mutations in Darier's Disease and Their Relationship to Neuropsychiatric Phenotypes. Human Molecular Genetics, 1999, 8, 1631-1636.	1.4	132
198	Support for RGS4 as a susceptibility gene for schizophrenia. Biological Psychiatry, 2004, 55, 192-195.	0.7	132

#	Article	IF	CITATIONS
199	Characterization of a Family with Rare Deletions in CNTNAP5 and DOCK4 Suggests Novel Risk Loci for Autism and Dyslexia. Biological Psychiatry, 2010, 68, 320-328.	0.7	131
200	An update on the genetics of schizophrenia. Current Opinion in Psychiatry, 2006, 19, 158-164.	3.1	129
201	Psychosis Susceptibility Gene ZNF804A and Cognitive Performance in Schizophrenia. Archives of General Psychiatry, 2010, 67, 692.	13.8	129
202	High Loading of Polygenic Risk for ADHD in Children With Comorbid Aggression. American Journal of Psychiatry, 2013, 170, 909-916.	4.0	127
203	New Approaches to Psychiatric Diagnostic Classification. Neuron, 2014, 84, 564-571.	3.8	127
204	Examining the independent and joint effects of molecular genetic liability and environmental exposures in schizophrenia: results from the EUGEI study. World Psychiatry, 2019, 18, 173-182.	4.8	127
205	Confirmation of association between expanded CAG/CTG repeats and both schizophrenia and bipolar disorder. Psychological Medicine, 1996, 26, 1145-1153.	2.7	126
206	Genetic variation of brain-derived neurotrophic factor (BDNF) in bipolar disorder. British Journal of Psychiatry, 2006, 188, 21-25.	1.7	126
207	Four Components Describe Behavioral Symptoms in 1,120 Individuals with Late-Onset Alzheimer's Disease. Journal of the American Geriatrics Society, 2006, 54, 1348-1354.	1.3	126
208	Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biology, 2018, 19, 194.	3.8	126
209	DAPK1 variants are associated with Alzheimer's disease and allele-specific expression. Human Molecular Genetics, 2006, 15, 2560-2568.	1.4	125
210	Premature mortality among people with severe mental illness — New evidence from linked primary care data. Schizophrenia Research, 2018, 199, 154-162.	1.1	125
211	A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Human Molecular Genetics, 2008, 17, 747-758.	1.4	124
212	Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case–control sample. Molecular Psychiatry, 2013, 18, 1302-1307.	4.1	123
213	Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size. Molecular Psychiatry, 2020, 25, 1822-1834.	4.1	122
214	Concurrent Validity of the Opcrit Diagnostic System. British Journal of Psychiatry, 1996, 169, 58-63.	1.7	121
215	Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank. Journal of Medical Genetics, 2019, 56, 131-138.	1.5	121
216	Bipolar disorder and polymorphisms in the dysbindin gene (DTNBP1). Biological Psychiatry, 2005, 57, 696-701.	0.7	120

#	Article	IF	CITATIONS
217	Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. Molecular Psychiatry, 2012, 17, 193-201.	4.1	120
218	Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. Lancet Psychiatry,the, 2017, 4, 57-62.	3.7	120
219	A Simple Method for Analyzing Microsatellite Allele Image Patterns Generated from DNA Pools and Its Application to Allelic Association Studies. American Journal of Human Genetics, 1998, 62, 1189-1197.	2.6	119
220	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. American Journal of Human Genetics, 2018, 102, 1185-1194.	2.6	119
221	Candidate-Gene Association Studies of Schizophrenia. American Journal of Human Genetics, 1999, 65, 587-592.	2.6	118
222	Analysis of Intellectual Disability Copy Number Variants for Association With Schizophrenia. JAMA Psychiatry, 2016, 73, 963.	6.0	118
223	Association of Genetic Risk for Schizophrenia With Nonparticipation Over Time in a Population-Based Cohort Study. American Journal of Epidemiology, 2016, 183, 1149-1158.	1.6	118
224	Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatry, 2007, 6, 84-91.	4.8	117
225	Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12469-12474.	3.3	116
226	A Systematic Genomewide Linkage Study in 353 Sib Pairs with Schizophrenia. American Journal of Human Genetics, 2003, 73, 1355-1367.	2.6	115
227	Convergent Evidence for 2′,3′-Cyclic Nucleotide 3′-Phosphodiesterase as a Possible Susceptibility Gene for Schizophrenia. Archives of General Psychiatry, 2006, 63, 18.	13.8	115
228	Suggestion of Roles for Both Common and Rare Risk Variants in Genome-wide Studies of Schizophrenia. Archives of General Psychiatry, 2010, 67, 667.	13.8	115
229	Association of Genetic Risk Variants With Attention-Deficit/Hyperactivity Disorder Trajectories in the General Population. JAMA Psychiatry, 2016, 73, 1285.	6.0	115
230	At-Risk Variant in TCF7L2 for Type II Diabetes Increases Risk of Schizophrenia. Biological Psychiatry, 2011, 70, 59-63.	0.7	114
231	Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature Communications, 2017, 8, 14774.	5.8	114
232	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biological Psychiatry, 2022, 91, 313-327.	0.7	114
233	Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphisms: relationships to monoamine metabolite concentrations in CSF of healthy volunteers. European Archives of Psychiatry and Clinical Neuroscience, 1997, 247, 297-302.	1.8	112
234	Examining for association between candidate gene polymorphisms in the dopamine pathway and attention-deficit hyperactivity disorder: A family-based study. American Journal of Medical Genetics Part A, 2001, 105, 464-470.	2.4	112

#	Article	IF	CITATIONS
235	Mental health resilience in the adolescent offspring of parents with depression: a prospective longitudinal study. Lancet Psychiatry,the, 2016, 3, 49-57.	3.7	112
236	Alzheimer's disease: The amyloid hypothesis on trial. British Journal of Psychiatry, 2016, 208, 1-3.	1.7	112
237	Association of Genetic Liability to Psychotic Experiences With Neuropsychotic Disorders and Traits. JAMA Psychiatry, 2019, 76, 1256.	6.0	112
238	Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Molecular Psychiatry, 2005, 10, 939-943.	4.1	111
239	Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Molecular Psychiatry, 2010, 15, 146-153.	4.1	111
240	Cannabis, <i>COMT</i> and psychotic experiences. British Journal of Psychiatry, 2011, 199, 380-385.	1.7	111
241	Characterizing Developmental Trajectories and the Role of Neuropsychiatric Genetic Risk Variants in Early-Onset Depression. JAMA Psychiatry, 2019, 76, 306.	6.0	111
242	Genetic Predictors of Response to Serotonergic and Noradrenergic Antidepressants in Major Depressive Disorder: A Genome-Wide Analysis of Individual-Level Data and a Meta-Analysis. PLoS Medicine, 2012, 9, e1001326.	3.9	110
243	Genome-wide association study of Alzheimer's disease with psychotic symptoms. Molecular Psychiatry, 2012, 17, 1316-1327.	4.1	110
244	Low Gene Expression Conferred by Association of an Allele of the 5-HT2CReceptor Gene With Antipsychotic-Induced Weight Gain. American Journal of Psychiatry, 2005, 162, 613-615.	4.0	109
245	Clustering of metabolic comorbidity in schizophrenia: a genetic contribution?. Journal of Psychopharmacology, 2005, 19, 47-55.	2.0	107
246	Schizoaffective Disorder in the DSM-5. Schizophrenia Research, 2013, 150, 21-25.	1.1	106
247	Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Molecular Psychiatry, 2012, 17, 906-917.	4.1	105
248	Biological Overlap of Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder: Evidence From Copy Number Variants. Journal of the American Academy of Child and Adolescent Psychiatry, 2014, 53, 761-770.e26.	0.3	105
249	Support for Neuregulin 1 as a Susceptibility Gene for Bipolar Disorder and Schizophrenia. Biological Psychiatry, 2008, 64, 419-427.	0.7	104
250	Joint Contributions of Rare Copy Number Variants and Common SNPs to Risk for Schizophrenia. American Journal of Psychiatry, 2019, 176, 29-35.	4.0	104
251	Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease. Molecular Psychiatry, 2013, 18, 461-470.	4.1	103
252	Is the Dysbindin Gene (DTNBP1) a Susceptibility Gene for Schizophrenia?. Schizophrenia Bulletin, 2005, 31, 800-805.	2.3	102

MICHAEL C O'DONOVAN

#	Article	IF	CITATIONS
253	Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics, 2008, 9, 1437-1443.	0.6	102
254	Copy Number Variation in Schizophrenia in the Japanese Population. Biological Psychiatry, 2010, 67, 283-286.	0.7	102
255	Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders. Neuron, 2015, 86, 1189-1202.	3.8	102
256	Evidence of Common Genetic Overlap Between Schizophrenia and Cognition. Schizophrenia Bulletin, 2016, 42, 832-842.	2.3	102
257	Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank. British Journal of Psychiatry, 2019, 214, 297-304.	1.7	102
258	Genotyping single nucleotide polymorphisms by primer extension and high performance liquid chromatography. Human Genetics, 1999, 104, 89-93.	1.8	101
259	Finding schizophrenia genes. Journal of Clinical Investigation, 2005, 115, 1440-1448.	3.9	101
260	Determination of the genomic structure and mutation screening in schizophrenic individuals for five subunits of the N-methyl-D-aspartate glutamate receptor. Molecular Psychiatry, 2002, 7, 508-514.	4.1	100
261	Reasons for discontinuing clozapine: A cohort study of patients commencing treatment. Schizophrenia Research, 2016, 174, 113-119.	1.1	100
262	De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nature Neuroscience, 2020, 23, 179-184.	7.1	100
263	Genetic relationships between suicide attempts, suicidal ideation and major psychiatric disorders: A genomeâ€wide association and polygenic scoring study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 428-437.	1.1	99
264	Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q. Human Molecular Genetics, 2000, 9, 843-848.	1.4	98
265	Case–control association study of 59 candidate genes reveals the DRD2 SNP rs6277 (C957T) as the only susceptibility factor for schizophrenia in the Bulgarian population. Journal of Human Genetics, 2009, 54, 98-107.	1.1	98
266	A Population-Based Cohort Study Examining the Incidence and Impact of Psychotic Experiences From Childhood to Adulthood, and Prediction of Psychotic Disorder. American Journal of Psychiatry, 2020, 177, 308-317.	4.0	98
267	The serotonin-2A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain. Molecular Psychiatry, 2004, 9, 109-114.	4.1	97
268	Identification of Novel Candidate Genes for Treatment Response to Risperidone and Susceptibility for Schizophrenia: Integrated Analysis Among Pharmacogenomics, Mouse Expression, and Genetic Case-Control Association Approaches. Biological Psychiatry, 2010, 67, 263-269.	0.7	97
269	Obstetric complications and schizophrenia: a computed tomographic study. Psychological Medicine, 1988, 18, 331-339.	2.7	95
270	Phenotypic and genetic complexity of psychosis. British Journal of Psychiatry, 2007, 190, 200-203.	1.7	95

#	Article	IF	CITATIONS
271	Maternally Derived Microduplications at 15q11-q13: Implication of Imprinted Genes in Psychotic Illness. American Journal of Psychiatry, 2011, 168, 408-417.	4.0	95
272	Common alleles contribute to schizophrenia in CNV carriers. Molecular Psychiatry, 2016, 21, 1085-1089.	4.1	95
273	Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimer's disease. Human Genetics, 2001, 109, 646-652.	1.8	93
274	Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. British Journal of Psychiatry, 2013, 203, 107-111.	1.7	93
275	Psychiatric disorders in children with 16p11.2 deletion and duplication. Translational Psychiatry, 2019, 9, 8.	2.4	93
276	DNA Pooling Identifies QTLs on Chromosome 4 for General Cognitive Ability in Children. Human Molecular Genetics, 1999, 8, 915-922.	1.4	91
277	α-2 macroglobulin gene and Alzheimer disease. Nature Genetics, 1999, 22, 17-19.	9.4	91
278	Association Between Schizophrenia-Related Polygenic Liability and the Occurrence and Level of Mood-Incongruent Psychotic Symptoms in Bipolar Disorder. JAMA Psychiatry, 2018, 75, 28.	6.0	91
279	Distribution and Expression of Picalm in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1071-1077.	0.9	90
280	Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nature Medicine, 2020, 26, 1912-1918.	15.2	90
281	Psychopathy trait scores in adolescents with childhood ADHD: the contribution of genotypes affecting MAOA, 5HTT and COMT activity. Psychiatric Genetics, 2009, 19, 312-319.	0.6	89
282	Association analysis of monoamine oxidase a and attention deficit hyperactivity disorder. American Journal of Medical Genetics Part A, 2003, 116B, 84-89.	2.4	88
283	Evaluation of a Susceptibility Gene for Schizophrenia: Genotype Based Meta-Analysis of RGS4 Polymorphisms from Thirteen Independent Samples. Biological Psychiatry, 2006, 60, 152-162.	0.7	87
284	Does Childhood Trauma Moderate Polygenic Risk for Depression? A Meta-analysis of 5765 Subjects From the Psychiatric Genomics Consortium. Biological Psychiatry, 2018, 84, 138-147.	0.7	87
285	Genotype–phenotype associations in children with copy number variants associated with high neuropsychiatric risk in the UK (IMAGINE-ID): a case-control cohort study. Lancet Psychiatry,the, 2019, 6, 493-505.	3.7	87
286	Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Molecular Psychiatry, 2021, 26, 4496-4510.	4.1	87
287	Recent genomic advances in schizophrenia. Clinical Genetics, 2012, 81, 103-109.	1.0	86
288	No Major Schizophrenia Locus Detected on Chromosome 1q in a Large Multicenter Sample. Science, 2002, 296, 739-741.	6.0	85

#	Article	IF	CITATIONS
289	Effects of Differential Genotyping Error Rate on the Type I Error Probability of Case-Control Studies. Human Heredity, 2006, 61, 55-64.	0.4	85
290	De Novo Rates and Selection of Schizophrenia-Associated Copy Number Variants. Biological Psychiatry, 2011, 70, 1109-1114.	0.7	85
291	Common variant at 16p11.2 conferring risk of psychosis. Molecular Psychiatry, 2014, 19, 108-114.	4.1	85
292	Optimal temperature selection for mutation detection by denaturing HPLC and comparison to single-stranded conformation polymorphism and heteroduplex analysis. Clinical Chemistry, 1999, 45, 1133-40.	1.5	85
293	Advances in genetic findings on attention deficit hyperactivity disorder. Psychological Medicine, 2007, 37, 1681-1692.	2.7	84
294	An Analysis of Two Genome-wide Association Meta-analyses Identifies a New Locus for Broad Depression Phenotype. Biological Psychiatry, 2017, 82, 322-329.	0.7	84
295	Genetic utility of broadly defined bipolar schizoaffective disorder as a diagnostic concept. British Journal of Psychiatry, 2009, 195, 23-29.	1.7	83
296	Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results. Psychological Medicine, 2012, 42, 607-616.	2.7	83
297	Further evidence for high rates of schizophrenia in 22q11.2 deletion syndrome. Schizophrenia Research, 2014, 153, 231-236.	1.1	83
298	Psychopathology and cognition in children with 22q11.2 deletion syndrome. British Journal of Psychiatry, 2014, 204, 46-54.	1.7	83
299	HTR2A: Association and expression studies in neuropsychiatric genetics. Annals of Medicine, 2005, 37, 121-129.	1.5	82
300	CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Human Molecular Genetics, 2014, 23, 1669-1676.	1.4	82
301	Schizophrenia genetics: emerging themes for a complex disorder. Molecular Psychiatry, 2015, 20, 72-76.	4.1	81
302	A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. Behavior Genetics, 2001, 31, 497-509.	1.4	80
303	Association at SYNE1 in both bipolar disorder and recurrent major depression. Molecular Psychiatry, 2013, 18, 614-617.	4.1	80
304	Changes in dopamine D1, D2 and D3 receptor mRNA levels in rat brain following antipsychotic treatment. Psychopharmacology, 1992, 106, 479-483.	1.5	79
305	Alzheimer's disease genetics: current knowledge and future challenges. International Journal of Geriatric Psychiatry, 2011, 26, 793-802.	1.3	79
306	SORL1 variants and risk of late-onset Alzheimer's disease. Neurobiology of Disease, 2008, 29, 293-296.	2.1	78

#	Article	IF	CITATIONS
307	Familiality of symptom dimensions in schizophrenia. Schizophrenia Research, 2001, 47, 223-232.	1.1	77
308	Pleiotropic Effects of Trait-Associated Genetic Variation on DNA Methylation: Utility for Refining GWAS Loci. American Journal of Human Genetics, 2017, 100, 954-959.	2.6	77
309	Refining the attention deficit hyperactivity disorder phenotype for molecular genetic studies. Molecular Psychiatry, 2006, 11, 714-720.	4.1	76
310	Lack of effect of antidepressant drugs on the levels of mRNAs encoding serotonergic receptors, synthetic enzymes and 5HT transporter. Neuropharmacology, 1994, 33, 433-440.	2.0	75
311	No Association Between Schizophrenia and Polymorphisms in COMT in Two Large Samples. American Journal of Psychiatry, 2005, 162, 1736-1738.	4.0	75
312	Genetic Predisposition to Increased Blood Cholesterol and Triglyceride Lipid Levels and Risk of Alzheimer Disease: A Mendelian Randomization Analysis. PLoS Medicine, 2014, 11, e1001713.	3.9	75
313	Shared Genetic Influences Between Attention-Deficit/Hyperactivity Disorder (ADHD) Traits in Children and Clinical ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 2015, 54, 322-327.	0.3	75
314	Consensus paper of the WFSBP Task Force on Genetics: Genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. World Journal of Biological Psychiatry, 2017, 18, 5-28.	1.3	75
315	Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia. Molecular Psychiatry, 2017, 22, 1502-1508.	4.1	75
316	Follow-up of genetic linkage findings on chromosome 16p13: evidence of association of N-methyl-D aspartate glutamate receptor 2A gene polymorphism with ADHD. Molecular Psychiatry, 2004, 9, 169-173.	4.1	74
317	Pooled DNA genotyping on Affymetrix SNP genotyping arrays. BMC Genomics, 2006, 7, 27.	1.2	74
318	A Population-Based Study of Genetic Variation and Psychotic Experiences in Adolescents. Schizophrenia Bulletin, 2014, 40, 1254-1262.	2.3	74
319	Psychiatric genetics: back to the future. Molecular Psychiatry, 2000, 5, 22-31.	4.1	73
320	Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Molecular Psychiatry, 2008, 13, 162-172.	4.1	73
321	Intellectual disability and major psychiatric disorders: A continuum of neurodevelopmental causality. British Journal of Psychiatry, 2012, 200, 268-269.	1.7	73
322	Independent estimation of the frequency of rare CNVs in the UK population confirms their role in schizophrenia. Schizophrenia Research, 2012, 135, 1-7.	1.1	73
323	The relative contribution of common and rare genetic variants to ADHD. Translational Psychiatry, 2015, 5, e506-e506.	2.4	73
324	Compound heterozygosity and nonsense mutations in the α1-subunit of the inhibitory glycine receptor in hyperekplexia. Human Genetics, 2001, 109, 267-270.	1.8	72

#	Article	IF	CITATIONS
325	Additive Genetic Variation in Schizophrenia Risk Is Shared by Populations of African and European Descent. American Journal of Human Genetics, 2013, 93, 463-470.	2.6	72
326	DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. ELife, 2021, 10, .	2.8	72
327	Schizophrenia and functional polymorphisms in the MAOA and COMT genes: No evidence for association or epistasis. American Journal of Medical Genetics Part A, 2002, 114, 491-496.	2.4	71
328	No support for association between the dopamine transporter (DAT1) gene and ADHD. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 139B, 7-10.	1.1	71
329	Pharmacogenetics of antidepressant response: A polygenic approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 75, 128-134.	2.5	71
330	De novo CNVs in bipolar affective disorder and schizophrenia. Human Molecular Genetics, 2014, 23, 6677-6683.	1.4	70
331	Strong bias in the location of functional promoter polymorphisms. Human Mutation, 2005, 26, 214-223.	1.1	69
332	Stressful life events, 5-HTT genotype and risk of depression. British Journal of Psychiatry, 2006, 188, 199-201.	1.7	69
333	Implication of a Rare Deletion at Distal 16p11.2 in Schizophrenia. JAMA Psychiatry, 2013, 70, 253.	6.0	69
334	Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes. Human Molecular Genetics, 2016, 25, 1247-1254.	1.4	69
335	Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Translational Psychiatry, 2017, 7, 1264.	2.4	69
336	Transdiagnostic dimensions of psychopathology at first episode psychosis: findings from the multinational EU-GEI study. Psychological Medicine, 2019, 49, 1378-1391.	2.7	69
337	DNA pooling as a tool for largeâ€scale association studies in complex traits. Annals of Medicine, 2004, 36, 146-152.	1.5	68
338	A bias-reducing pathway enrichment analysis of genome-wide association data confirmed association of the MHC region with schizophrenia. Journal of Medical Genetics, 2012, 49, 96-103.	1.5	68
339	Factor analysis of schizophrenic symptoms using the OPCRIT checklist. Schizophrenia Research, 1996, 22, 233-239.	1.1	67
340	APOE Îμ4 influences the manifestation of Alzheimer's disease in adults with Down's syndrome. British Journal of Psychiatry, 2000, 176, 468-472.	1.7	67
341	Chromosome 22q11 deletions, velo-cardio-facial syndrome and early-onset psychosis. British Journal of Psychiatry, 2003, 183, 409-413.	1.7	67
342	Schizophrenia genetics: advancing on two fronts. Current Opinion in Genetics and Development, 2009, 19, 266-270.	1.5	67

#	Article	IF	CITATIONS
343	GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Molecular Psychiatry, 2011, 16, 1117-1129.	4.1	67
344	Polygenic dissection of the bipolar phenotype. British Journal of Psychiatry, 2011, 198, 284-288.	1.7	67
345	Genome screen for loci influencing age at onset and rate of decline in late onset Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 135B, 24-32.	1.1	66
346	The contribution of gene–environment interaction to psychopathology. Development and Psychopathology, 2007, 19, 989-1004.	1.4	66
347	Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Molecular Psychiatry, 2009, 14, 30-36.	4.1	66
348	Reciprocal Duplication of the Williams-Beuren Syndrome Deletion on Chromosome 7q11.23 Is Associated with Schizophrenia. Biological Psychiatry, 2014, 75, 371-377.	0.7	66
349	Glycogen synthase kinaseâ€3β and tau genes interact in Alzheimer's disease. Annals of Neurology, 2008, 64, 446-454.	2.8	65
350	Novel Insight Into the Etiology of Autism Spectrum Disorder Gained by Integrating Expression Data With Genome-wide Association Statistics. Biological Psychiatry, 2019, 86, 265-273.	0.7	65
351	Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nature Genetics, 2022, 54, 541-547.	9.4	65
352	No evidence for allelic association between bipolar disorder and monoamine oxidase a gene polymorphisms. American Journal of Medical Genetics Part A, 1995, 60, 322-324.	2.4	64
353	Further support for an association between a polymorphic CAG repeat in the hKCa3 gene and schizophrenia. Molecular Psychiatry, 1998, 3, 266-269.	4.1	64
354	Polymorphisms in the MAOA, MAOB, and COMT genes and aggressive behavior in schizophrenia. American Journal of Medical Genetics Part A, 2004, 128B, 19-20.	2.4	64
355	Strong evidence that GNB1L is associated with schizophrenia. Human Molecular Genetics, 2008, 17, 555-566.	1.4	64
356	TCF4, Schizophrenia, and Pitt-Hopkins Syndrome. Schizophrenia Bulletin, 2010, 36, 443-447.	2.3	64
357	Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: Meta-analysis of data from genome-wide association studies. European Neuropsychopharmacology, 2018, 28, 945-954.	0.3	64
358	A genomewide linkage study of age at onset in schizophrenia. American Journal of Medical Genetics Part A, 2001, 105, 439-445.	2.4	63
359	ADHD and depression: investigating a causal explanation. Psychological Medicine, 2021, 51, 1890-1897.	2.7	63
360	Bi-directional changes in the levels of messenger RNAs encoding Î ³ -aminobutyric acidA receptor α subunits after flurazepam treatment. European Journal of Pharmacology, 1992, 226, 335-341.	2.7	62

#	Article	IF	CITATIONS
361	Association analysis of NOTCH4 loci in schizophrenia using family and population-based controls. Nature Genetics, 2001, 28, 126-128.	9.4	62
362	The genetics of developmental dyslexia. European Journal of Human Genetics, 2006, 14, 681-689.	1.4	62
363	Schizophrenia genetics: new insights from new approaches. British Medical Bulletin, 2009, 91, 61-74.	2.7	62
364	Relationship between obesity and the risk of clinically significant depression: Mendelian randomisation study. British Journal of Psychiatry, 2014, 205, 24-28.	1.7	62
365	A Genetics-First Approach to Dissecting the Heterogeneity of Autism: Phenotypic Comparison of Autism Risk Copy Number Variants. American Journal of Psychiatry, 2021, 178, 77-86.	4.0	62
366	A high proportion of polymorphisms in the promoters of brain expressed genes influences transcriptional activity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1690, 238-249.	1.8	61
367	Genome-wide association studies in psychiatry: lessons from early studies of non-psychiatric and psychiatric phenotypes. Molecular Psychiatry, 2008, 13, 649-653.	4.1	61
368	Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Molecular Psychiatry, 2009, 14, 786-795.	4.1	61
369	Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees. American Journal of Psychiatry, 2012, 169, 963-973.	4.0	61
370	Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics, 2018, 19, 867.	1.2	61
371	Investigation of the Genetic Association between Quantitative Measures of Psychosis and Schizophrenia: A Polygenic Risk Score Analysis. PLoS ONE, 2012, 7, e37852.	1.1	60
372	The Role of the Major Histocompatibility Complex Region in Cognition and Brain Structure: A Schizophrenia GWAS Follow-Up. American Journal of Psychiatry, 2013, 170, 877-885.	4.0	60
373	The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. Schizophrenia Bulletin, 2020, 46, 336-344.	2.3	60
374	Mutation screening of theHomer gene family and association analysis in schizophrenia. American Journal of Medical Genetics Part A, 2003, 120B, 18-21.	2.4	59
375	<i>P2RX7</i> : A bipolar and unipolar disorder candidate susceptibility gene?. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 1063-1069.	1.1	59
376	The association between lower educational attainment and depression owing to shared genetic effects? Results in ~25 000 subjects. Molecular Psychiatry, 2015, 20, 735-743.	4.1	59
377	Neurocognitive abilities in the general population and composite genetic risk scores for attentionâ€deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2015, 56, 648-656.	3.1	59
378	Familial influence on variation in age of onset and behavioural phenotype in Alzheimer's disease. British Journal of Psychiatry, 2000, 176, 156-159.	1.7	58

#	Article	IF	CITATIONS
379	Searching for schizophrenia genes. Trends in Molecular Medicine, 2001, 7, 169-174.	3.5	58
380	Schizophrenia: a genetic disorder of the synapse?. BMJ: British Medical Journal, 2005, 330, 158-159.	2.4	58
381	Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nature Genetics, 2004, 36, 783-784.	9.4	57
382	Testing for gene × environment interaction effects in attention deficit hyperactivity disorder and associated antisocial behavior. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 49-53.	1.1	57
383	Genome-wide analysis of self-reported risk-taking behaviour and cross-disorder genetic correlations in the UK Biobank cohort. Translational Psychiatry, 2018, 8, 39.	2.4	57
384	Localization of Bipolar Susceptibility Locus by Molecular Genetic Analysis of the Chromosome 12q23-q24 Region in Two Pedigrees With Bipolar Disorder and Darier's Disease. American Journal of Psychiatry, 2005, 162, 35-42.	4.0	56
385	Association analysis of AKT1 and schizophrenia in a UK case control sample. Schizophrenia Research, 2007, 93, 58-65.	1.1	56
386	Phenotypic variations on the theme of CNVs. Nature Genetics, 2008, 40, 1392-1393.	9.4	56
387	A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. BMC Medicine, 2015, 13, 86.	2.3	56
388	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	2.8	56
389	Cyfip1 haploinsufficient rats show white matter changes, myelin thinning, abnormal oligodendrocytes and behavioural inflexibility. Nature Communications, 2019, 10, 3455.	5.8	56
390	Association of Antihypertensive Drug Target Genes With Psychiatric Disorders. JAMA Psychiatry, 2021, 78, 623.	6.0	56
391	Long repeat tracts atSCA8 in major psychosis. American Journal of Medical Genetics Part A, 2000, 96, 873-876.	2.4	55
392	Multicenter linkage study of schizophrenia loci on chromosome 22q. Molecular Psychiatry, 2004, 9, 784-795.	4.1	55
393	Genotype Link With Extreme Antisocial Behavior. Archives of General Psychiatry, 2010, 67, 1317.	13.8	55
394	Polymorphism of the 5-HT transporter and response to antidepressants: randomised controlled trial. British Journal of Psychiatry, 2011, 198, 464-471.	1.7	55
395	Adverse effects from antidepressant treatment: randomised controlled trial of 601 depressed individuals. Psychopharmacology, 2014, 231, 2921-2931.	1.5	55
396	Psychiatric gene discoveries shape evidence on ADHD's biology. Molecular Psychiatry, 2016, 21, 1202-1207.	4.1	55

#	Article	IF	CITATIONS
397	Factor-derived subsyndromes of schizophrenia and familial morbid risks. Schizophrenia Research, 1997, 23, 231-238.	1.1	54
398	Candidate gene association study of insulin signaling genes and Alzheimer's disease: Evidence forSOS2,PCK1, andPPARγas susceptibility loci. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 508-516.	1.1	54
399	Don't give up on GWAS. Molecular Psychiatry, 2012, 17, 2-3.	4.1	54
400	Exome arrays capture polygenic rare variant contributions to schizophrenia. Human Molecular Genetics, 2016, 25, 1001-1007.	1.4	54
401	Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nature Communications, 2018, 9, 711.	5.8	54
402	Pharmacogenomic Variants and Drug Interactions Identified Through the Genetic Analysis of Clozapine Metabolism. American Journal of Psychiatry, 2019, 176, 477-486.	4.0	54
403	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry, 2020, 77, 420.	6.0	54
404	A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Human Molecular Genetics, 2020, 29, 159-167.	1.4	54
405	Chromosome workshop: Chromosomes 11, 14, and 15. American Journal of Medical Genetics Part A, 1999, 88, 244-254.	2.4	53
406	The Role of Variation at AβPP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 28, 377-387.	1.2	53
407	The synapse in schizophrenia. European Journal of Neuroscience, 2014, 39, 1059-1067.	1.2	53
408	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. International Journal of Epidemiology, 2015, 44, 1706-1721.	0.9	53
409	The genetics of neuropsychiatric disorders. Brain and Neuroscience Advances, 2018, 2, 239821281879927.	1.8	53
410	Complement system biomarkers in first episode psychosis. Schizophrenia Research, 2019, 204, 16-22.	1.1	53
411	Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Medicine, 2020, 12, 43.	3.6	53
412	Genome-wide Association Analysis of Parkinson's Disease and Schizophrenia Reveals Shared Genetic Architecture and Identifies Novel Risk Loci. Biological Psychiatry, 2021, 89, 227-235.	0.7	53
413	Association between PRODH and schizophrenia is not confirmed. Molecular Psychiatry, 2003, 8, 644-645.	4.1	52
414	Genome-wide linkage analysis of 723 affected relative pairs with late-onset Alzheimer's disease. Human Molecular Genetics, 2007, 16, 2703-2712.	1.4	52

#	Article	IF	CITATIONS
415	No consistent evidence for association between mtDNA variants and Alzheimer disease. Neurology, 2012, 78, 1038-1042.	1.5	52
416	A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Human Molecular Genetics, 2010, 19, 1379-1386.	1.4	51
417	A Population-Based Study of Shared Genetic Variation Between Premorbid IQ and Psychosis Among Male Twin Pairs and Sibling Pairs From Sweden. Archives of General Psychiatry, 2012, 69, 460.	13.8	51
418	Analysis of Genome-Wide Association Studies of Alzheimer Disease and of Parkinson Disease to Determine If These 2 Diseases Share a Common Genetic Risk. JAMA Neurology, 2013, 70, 1268-76.	4.5	51
419	TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport. Nature Communications, 2015, 6, 7074.	5.8	51
420	Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders. PLoS Genetics, 2016, 12, e1005993.	1.5	51
421	No evidence for association between polymorphisms in GRM3and schizophrenia. BMC Psychiatry, 2005, 5, 23.	1.1	50
422	Hair Cortisol in Twins: Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes. Scientific Reports, 2017, 7, 15351.	1.6	50
423	Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity. Scientific Reports, 2017, 7, 4394.	1.6	50
424	Exclusion of the Darier's disease gene, ATP2A2, as a common susceptibility gene for bipolar disorder. Molecular Psychiatry, 2001, 6, 92-97.	4.1	49
425	No support for association between Dyslexia Susceptibility 1 Candidate 1 and developmental dyslexia. Molecular Psychiatry, 2005, 10, 237-238.	4.1	49
426	Association of serotonin and dopamine gene pathways with behavioral subphenotypes in dementia. Neurobiology of Aging, 2012, 33, 791-803.	1.5	49
427	Variation in tau isoform expression in different brain regions and disease states. Neurobiology of Aging, 2013, 34, 1922.e7-1922.e12.	1.5	49
428	Interaction between the <i>FTO</i> gene, body mass index and depression: meta-analysis of 13701 individuals. British Journal of Psychiatry, 2017, 211, 70-76.	1.7	49
429	Examining cognition across the bipolar/schizophrenia diagnostic spectrum. Journal of Psychiatry and Neuroscience, 2018, 43, 245-253.	1.4	49
430	Investigating the genetic architecture of general and specific psychopathology in adolescence. Translational Psychiatry, 2018, 8, 145.	2.4	49
431	Association between a promoter variant in the monoamine oxidase A gene and schizophrenia. Schizophrenia Research, 2003, 61, 31-37.	1.1	48
432	Implications of Genetic Findings for Understanding Schizophrenia. Schizophrenia Bulletin, 2012, 38, 904-907.	2.3	48

#	Article	IF	CITATIONS
433	Neuropsychological effects of the <i><scp>CSMD1</scp></i> genomeâ€wide associated schizophrenia risk variant rs10503253. Genes, Brain and Behavior, 2013, 12, 203-209.	1.1	48
434	Genetics of schizophrenia: A consensus paper of the WFSBP Task Force on Genetics. World Journal of Biological Psychiatry, 2017, 18, 492-505.	1.3	48
435	Clinical indicators of treatment-resistant psychosis. British Journal of Psychiatry, 2020, 216, 259-266.	1.7	48
436	The genomic basis of mood instability: identification of 46 loci in 363,705 UK Biobank participants, genetic correlation with psychiatric disorders, and association with gene expression and function. Molecular Psychiatry, 2020, 25, 3091-3099.	4.1	48
437	Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Molecular Psychiatry, 2021, 26, 2070-2081.	4.1	48
438	CAG repeat length in the hKCa3 gene and symptom dimensions in schizophrenia. Biological Psychiatry, 1999, 45, 1592-1596.	0.7	47
439	A functional polymorphism in the succinate-semialdehyde dehydrogenase (aldehyde dehydrogenase 5) Tj ETQq1	1 0.78431 4.1	4 rgBT /Over
440	No association between bipolar disorder and alleles at a functional polymorphism in the COMT gene. British Journal of Psychiatry, 1997, 170, 526-528.	1.7	46
441	Detailed analysis of PRODH and PsPRODH reveals no association with schizophrenia. American Journal of Medical Genetics Part A, 2003, 120B, 42-46.	2.4	46
442	De Novo Mutation in Schizophrenia. Schizophrenia Bulletin, 2012, 38, 377-381.	2.3	46
443	Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry,the, 2016, 3, 84-90.	3.7	46
444	Estimating Exposome Score for Schizophrenia Using Predictive Modeling Approach in Two Independent Samples: The Results From the EUGEI Study. Schizophrenia Bulletin, 2019, 45, 960-965.	2.3	46
445	Minor Physical Anomalies and their Relationship to the Aetiology of Schizophrenia. British Journal of Psychiatry, 1996, 168, 139-142.	1.7	45
446	No evidence of association of two 5HT transporter gene polymorphisms and attention deficit hyperactivity disorder. Psychiatric Genetics, 2003, 13, 107-110.	0.6	45
447	Increased familial risk and genomewide significant linkage for Alzheimer's disease with psychosis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 841-848.	1.1	45
448	Influence of NOS1 on Verbal Intelligence and Working Memory in Both Patients With Schizophrenia and Healthy Control Subjects. Archives of General Psychiatry, 2009, 66, 1045.	13.8	45
449	Mutation screening of SCN2A in schizophrenia and identification of a novel loss-of-function mutation. Psychiatric Genetics, 2016, 26, 60-65.	0.6	45
450	Will schizophrenia become a graveyard for molecular geneticists?. Psychological Medicine, 1992, 22, 289-293.	2.7	44

#	Article	IF	CITATIONS
451	Allelic expression of APOE in human brain: effects of epsilon status and promoter haplotypes. Human Molecular Genetics, 2004, 13, 2885-2892.	1.4	44
452	Promoter polymorphisms in glutathione-S-transferase genes affect transcription. Pharmacogenetics and Genomics, 2004, 14, 45-51.	5.7	44
453	Steroid sulfatase is a potential modifier of cognition in attention deficit hyperactivity disorder. Genes, Brain and Behavior, 2011, 10, 334-344.	1.1	44
454	Genetics of schizophrenia. Current Opinion in Behavioral Sciences, 2015, 2, 8-14.	2.0	44
455	Investigating lateâ€onset <scp>ADHD</scp> : a population cohort investigation. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 1105-1113.	3.1	44
456	Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Molecular Psychiatry, 2021, 26, 2457-2470.	4.1	44
457	Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nature Communications, 2021, 12, 5353.	5.8	44
458	Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry, 2022, 79, 260.	6.0	44
459	Genetic variability at the amyloid-β precursor protein locus may contribute to the risk of late-onset Alzheimer's disease. Neuroscience Letters, 1999, 269, 67-70.	1.0	43
460	Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1170-1179.	1.1	43
461	Association of Recent Stressful Life Events With Mental and Physical Health in the Context of Genomic and Exposomic Liability for Schizophrenia. JAMA Psychiatry, 2020, 77, 1296.	6.0	43
462	Changes in dopa decarboxylase mRNA but not tyrosine hydroxylase mRNA levels in rat brain following antipsychotic treatment. Psychopharmacology, 1992, 108, 98-102.	1.5	42
463	Clozapine and sulpiride up-regulate dopamine D3 receptor mRNA levels. Neuropharmacology, 1993, 32, 901-907.	2.0	42
464	Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 762-770.	1.1	42
465	Evaluation of an approximation method for assessment of overall significance of multipleâ€dependent tests in a genomewide association study. Genetic Epidemiology, 2011, 35, 861-866.	0.6	42
466	Investigating the genetic underpinnings of early-life irritability. Translational Psychiatry, 2017, 7, e1241-e1241.	2.4	42
467	A genome-wide association study in individuals of African ancestry reveals the importance of the Duffy-null genotype in the assessment of clozapine-related neutropenia. Molecular Psychiatry, 2019, 24, 328-337.	4.1	42
468	Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects. American Journal of Human Genetics, 2020, 106, 26-40.	2.6	42

#	Article	IF	CITATIONS
469	Dysbindin-1 and schizophrenia: from genetics to neuropathology. Journal of Clinical Investigation, 2004, 113, 1255-1257.	3.9	42
470	Linkage disequilibrium mapping provides further evidence of a gene for reading disability on chromosome 6p21.3–22. Molecular Psychiatry, 2003, 8, 176-185.	4.1	41
471	α-T-Catenin Is Expressed in Human Brain and Interacts With the Wnt Signaling Pathway But Is Not Responsible for Linkage to Chromosome 10 in Alzheimer's Disease. NeuroMolecular Medicine, 2004, 5, 133-146.	1.8	41
472	Functional analysis of polymorphisms in the promoter regions of genes on 22q11. Human Mutation, 2004, 24, 35-42.	1.1	41
473	No Association Between the Putative Functional ZDHHC8 Single Nucleotide Polymorphism rs175174 and Schizophrenia in Large European Samples. Biological Psychiatry, 2005, 58, 78-80.	0.7	41
474	Psychopathy traits in adolescents with childhood attention-deficit hyperactivity disorder. British Journal of Psychiatry, 2009, 194, 62-67.	1.7	41
475	Identifying Novel Types of Irritability Using a Developmental Genetic Approach. American Journal of Psychiatry, 2019, 176, 635-642.	4.0	41
476	Associations Between Schizophrenia Polygenic Liability, Symptom Dimensions, and Cognitive Ability in Schizophrenia. JAMA Psychiatry, 2021, 78, 1143.	6.0	41
477	Genomics: the next psychiatric revolution?. British Journal of Psychiatry, 1996, 169, 135-138.	1.7	40
478	Association analysis of 528 intraâ€genic SNPs in a region of chromosome 10 linked to late onset Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 727-731.	1.1	40
479	Schizophrenia genetic variants are not associated with intelligence. Psychological Medicine, 2013, 43, 2563-2570.	2.7	40
480	Estimating Effect Sizes and Expected Replication Probabilities from GWAS Summary Statistics. Frontiers in Genetics, 2016, 7, 15.	1.1	40
481	Developmental coordination disorder, psychopathology and IQ in 22q11.2 deletion syndrome. British Journal of Psychiatry, 2018, 212, 27-33.	1.7	40
482	New insights into the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation. Pharmacogenomics Journal, 2018, 18, 413-421.	0.9	40
483	Targeted Sequencing of 10,198 Samples Confirms Abnormalities in Neuronal Activity and Implicates Voltage-Gated Sodium Channels in Schizophrenia Pathogenesis. Biological Psychiatry, 2019, 85, 554-562.	0.7	40
484	Hyperekplexia: abnormal startle response due to glycine receptor mutations. British Journal of Psychiatry, 1997, 170, 106-108.	1.7	39
485	Analysis of ProDH, COMT and ZDHHC8 risk variants does not support individual or interactive effects on schizophrenia susceptibility. Schizophrenia Research, 2006, 87, 21-27.	1.1	39
486	Evidence that common variation in NEDD9 is associated with susceptibility to late-onset Alzheimer's and Parkinson's disease. Human Molecular Genetics, 2008, 17, 759-767.	1.4	39

#	Article	IF	CITATIONS
487	Ubiquilin 1 polymorphisms are not associated with late-onset Alzheimer's disease. Annals of Neurology, 2006, 59, 21-26.	2.8	37
488	Case-control association study of 65 candidate genes revealed a possible association of a SNP of HTR5A to be a factor susceptible to bipolar disease in Bulgarian population. Journal of Affective Disorders, 2009, 117, 87-97.	2.0	37
489	Molecular genetic contribution to the developmental course of attention-deficit hyperactivity disorder. European Child and Adolescent Psychiatry, 2009, 18, 26-32.	2.8	37
490	Genetic variants in the ErbB4 gene are associated with white matter integrity. Psychiatry Research - Neuroimaging, 2011, 191, 133-137.	0.9	37
491	An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis. Human Molecular Genetics, 2014, 23, 3316-3326.	1.4	37
492	A correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed framework. BMC Genomics, 2018, 19, 494.	1.2	37
493	Epilepsy and seizures in young people with 22q11.2 deletion syndrome: Prevalence and links with other neurodevelopmental disorders. Epilepsia, 2019, 60, 818-829.	2.6	37
494	Dynamic expression of genes associated with schizophrenia and bipolar disorder across development. Translational Psychiatry, 2019, 9, 74.	2.4	37
495	No evidence of association between Catechol-O-Methyltransferase (COMT) Val 158 Met genotype and performance on neuropsychological tasks in children with ADHD: A case-control study. BMC Psychiatry, 2004, 4, 15.	1.1	36
496	Genetic association of the APP binding protein 2 gene (APBB2) with late onset Alzheimer disease. Human Mutation, 2005, 25, 270-277.	1.1	36
497	A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer's disease. Pharmacogenetics and Genomics, 2006, 16, 75-77.	0.7	36
498	Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case–control sample of schizophrenia. Translational Psychiatry, 2015, 5, e656-e656.	2.4	36
499	Using Genetics to Examine a General Liability to Childhood Psychopathology. Behavior Genetics, 2020, 50, 213-220.	1.4	36
500	Characterisation, mutation detection, and association analysis of alternative promoters and 5′ UTRs of the human dopamine D3 receptor gene in schizophrenia. Molecular Psychiatry, 2002, 7, 493-502.	4.1	35
501	Association studies between risk for late-onset Alzheimer's disease and variants in insulin degrading enzyme. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 136B, 62-68.	1.1	35
502	The clinical presentation of attention deficitâ€hyperactivity disorder (ADHD) in children with 22q11.2 deletion syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 730-738.	1.1	35
503	Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia. Translational Psychiatry, 2015, 5, e607-e607.	2.4	35
504	Identifying mechanisms that underlie links between <i><scp>COMT</scp></i> genotype and aggression in male adolescents with <scp>ADHD</scp> . Journal of Child Psychology and Psychiatry and Allied Disciplines, 2016, 57, 472-480.	3.1	35

#	Article	IF	CITATIONS
505	Structural and Functional Neuroimaging of Polygenic Risk for Schizophrenia: A Recall-by-Genotype–Based Approach. Schizophrenia Bulletin, 2019, 45, 405-414.	2.3	35
506	Genetic abnormalities of chromosome 22 and the development of psychosis. Current Psychiatry Reports, 2004, 6, 176-182.	2.1	34
507	Misconceptions about gene-environment interactions in psychiatry. Evidence-Based Mental Health, 2011, 13, 65-68.	2.2	34
508	Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS. PLoS Genetics, 2016, 12, e1005803.	1.5	34
509	MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls. Translational Psychiatry, 2017, 7, e1012-e1012.	2.4	34
510	Jumping to conclusions, general intelligence, and psychosis liability: findings from the multi-centre EU-GEI case-control study. Psychological Medicine, 2021, 51, 623-633.	2.7	34
511	Analysis of CAG/CTG repeat size in chinese subjects with schizophrenia and bipolar affective disorder using the repeat expansion detection method. Biological Psychiatry, 1998, 44, 1160-1165.	0.7	33
512	Sequence variation in the CHAT locus shows no association with late-onset Alzheimer's disease. Human Genetics, 2003, 113, 258-267.	1.8	33
513	Diagnosis of functional psychoses: time to face the future. Lancet, The, 2009, 373, 190-191.	6.3	33
514	A Multi-Center Study of ACE and the Risk of Late-Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 587-597.	1.2	33
515	A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer's disease risk. Human Molecular Genetics, 2013, 22, 816-824.	1.4	33
516	Factor Structure of Autistic Traits in Children with ADHD. Journal of Autism and Developmental Disorders, 2014, 44, 204-215.	1.7	33
517	Alzheimer's disease risk variant in <i>CLU</i> is associated with neural inefficiency in healthy individuals. Alzheimer's and Dementia, 2015, 11, 1144-1152.	0.4	33
518	Childhood cognitive development in 22q11.2 deletion syndrome: Case–control study. British Journal of Psychiatry, 2017, 211, 223-230.	1.7	33
519	Genetic comorbidity between major depression and cardioâ€metabolic traits, stratified by age at onset of major depression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 309-330.	1.1	33
520	Genome-wide association study of dietary intake in the UK biobank study and its associations with schizophrenia and other traits. Translational Psychiatry, 2020, 10, 51.	2.4	33
521	Linked polymorphisms upstream of exons 1 and 2 of the human cholecystokinin gene are not associated with schizophrenia or bipolar disorder. Molecular Psychiatry, 1998, 3, 67-71.	4.1	32
522	Tryptophan Hydroxylase Gene and Manic-Depressive Illness. Archives of General Psychiatry, 1999, 56, 98.	13.8	32

#	Article	IF	CITATIONS
523	Bipolar disorder and variation at a common polymorphism (A1832G) within exon 8 of the Wolfram gene. , 2000, 96, 154-157.		32
524	Whole Genome Association Study in a Homogenous Population in Shandong Peninsula of China Reveals JARID2 as a Susceptibility Gene for Schizophrenia. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-7.	3.0	32
525	Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Molecular Psychiatry, 2010, 15, 1101-1111.	4.1	32
526	Comparison of Genetic Liability for Sleep Traits Among Individuals With Bipolar Disorder I or II and Control Participants. JAMA Psychiatry, 2020, 77, 303.	6.0	32
527	Simultaneous quantification of several mRNA species by solution hybridisation with oligonucleotides. Nucleic Acids Research, 1991, 19, 3466-3466.	6.5	31
528	No evidence for expanded polyglutamine sequences in bipolar disorder and schizophrenia. Molecular Psychiatry, 1997, 2, 478-482.	4.1	31
529	Evidence that putative ADHD low risk alleles at <i>SNAP25</i> may increase the risk of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 893-899.	1.1	31
530	An association study of common variation at the <i>MAPT</i> locus with lateâ€onset Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 1152-1155.	1.1	31
531	Mutation screening of the KCNN3 gene reveals a rare frameshift mutation. Molecular Psychiatry, 2001, 6, 259-260.	4.1	30
532	Evidence that a DISC1 frame-shift deletion associated with psychosis in a single family may not be a pathogenic mutation. Molecular Psychiatry, 2006, 11, 798-799.	4.1	30
533	Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer's disease. Neuroscience Letters, 2009, 461, 54-59.	1.0	30
534	Effects of copy number variations on brain structure and risk for psychiatric illness: Largeâ€scale studies from the <scp>ENIGMA</scp> working groups on <scp>CNVs</scp> . Human Brain Mapping, 2022, 43, 300-328.	1.9	30
535	DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder. PLoS ONE, 2012, 7, e35424.	1.1	30
536	Novel Loci Associated with Increased Risk of Sudden Cardiac Death in the Context of Coronary Artery Disease. PLoS ONE, 2013, 8, e59905.	1.1	30
537	Dynamic mutations and psychiatric genetics. Psychological Medicine, 1996, 26, 1-6.	2.7	29
538	New findings from genetic association studies of schizophrenia. Journal of Human Genetics, 2009, 54, 9-14.	1.1	29
539	Genetic Differences between Five European Populations. Human Heredity, 2010, 70, 141-149.	0.4	29
540	What have we learned from the Psychiatric Genomics Consortium. World Psychiatry, 2015, 14, 291-293.	4.8	29

#	Article	IF	CITATIONS
541	Genetically predicted complement component 4A expression: effects on memory function and middle temporal lobe activation. Psychological Medicine, 2018, 48, 1608-1615.	2.7	29
542	Genetics of self-reported risk-taking behaviour, trans-ethnic consistency and relevance to brain gene expression. Translational Psychiatry, 2018, 8, 178.	2.4	29
543	Reciprocal White Matter Changes Associated With Copy Number Variation at 15q11.2 BP1-BP2: A Diffusion Tensor Imaging Study. Biological Psychiatry, 2019, 85, 563-572.	0.7	29
544	A comparison of four clustering methods for brain expression microarray data. BMC Bioinformatics, 2008, 9, 490.	1.2	28
545	Genome-wide association study on bipolar disorder in the Bulgarian population. Genes, Brain and Behavior, 2011, 10, 789-797.	1.1	28
546	Independent evidence for the selective influence of GABAA receptors on one component of the bipolar disorder phenotype. Molecular Psychiatry, 2011, 16, 587-589.	4.1	28
547	Mutation screening of the 3q29 microdeletion syndrome candidate genes <i>DLG1</i> and <i>PAK2</i> in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 844-849.	1.1	28
548	Clinical and cognitive characteristics of children with attention-deficit hyperactivity disorder, with and without copy number variants. British Journal of Psychiatry, 2011, 199, 398-403.	1.7	28
549	Reduced burden of very large and rare CNVs in bipolar affective disorder. Bipolar Disorders, 2013, 15, 893-898.	1.1	28
550	Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the <i>ZNF804A</i> Pathway. JAMA Psychiatry, 2014, 71, 778.	6.0	28
551	Genomeâ€wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 276-289.	1.1	28
552	Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C's Role in Working Memory. Neuropsychopharmacology, 2017, 42, 2612-2622.	2.8	28
553	Replicated evidence that endophenotypic expression of schizophrenia polygenic risk is greater in healthy siblings of patients compared to controls, suggesting gene–environment interaction. The EUGEI study. Psychological Medicine, 2020, 50, 1884-1897.	2.7	28
554	Cognitive deficits in childhood, adolescence and adulthood in 22q11.2 deletion syndrome and association with psychopathology. Translational Psychiatry, 2020, 10, 53.	2.4	28
555	A Family Based Study Implicates Solute Carrier Family 1–Member 3 (SLC1A3) Gene in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2005, 57, 1461-1466.	0.7	27
556	Interaction between theADAM12 andSH3MD1 genes may confer susceptibility to late-onset Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 448-452.	1.1	27
557	A family-based study of common polygenic variation and risk of schizophrenia. Molecular Psychiatry, 2011, 16, 887-888.	4.1	27
558	Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. Human Brain Mapping, 2016, 37, 491-500.	1.9	27

#	Article	IF	CITATIONS
559	Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 80-85.	1.1	27
560	The high affinity neurotensin receptor gene (NTSR1): comparative sequencing and association studies in schizophrenia. Molecular Psychiatry, 2000, 5, 552-557.	4.1	26
561	Screening the human protocadherin 8 (PCDH8) gene in schizophrenia. Genes, Brain and Behavior, 2002, 1, 187-191.	1.1	26
562	Association study in the 5q31-32 linkage region for schizophrenia using pooled DNA genotyping. BMC Psychiatry, 2008, 8, 11.	1.1	26
563	Association of copy number variation across the genome with neuropsychiatric traits in the general population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 489-502.	1.1	26
564	Increasing the Clinical Psychiatric Knowledge Base About Pathogenic Copy Number Variation. American Journal of Psychiatry, 2020, 177, 204-209.	4.0	26
565	Area deprivation, urbanicity, severe mental illness and social drift — A population-based linkage study using routinely collected primary and secondary care data. Schizophrenia Research, 2020, 220, 130-140.	1.1	26
566	Comparative sequencing of the proneurotensin gene and association studies in schizophrenia. Molecular Psychiatry, 2000, 5, 208-212.	4.1	25
567	Allelic variation of aBall polymorphism in the DRD3 gene does not influence susceptibility to bipolar disorder: Results of analysis and meta-analysis. American Journal of Medical Genetics Part A, 2001, 105, 307-311.	2.4	25
568	A Regulatory Monoamine Oxidase A Promoter Polymorphism and Personality Traits. Neuropsychobiology, 2002, 46, 190-193.	0.9	25
569	Streamlined analysis of pooled genotype data in SNP-based association studies. Genetic Epidemiology, 2005, 28, 273-282.	0.6	25
570	POLARIS: Polygenic LDâ€adjusted risk score approach for setâ€based analysis of GWAS data. Genetic Epidemiology, 2018, 42, 366-377.	0.6	25
571	Genome-wide Burden of Rare Short Deletions Is Enriched in Major Depressive Disorder in Four Cohorts. Biological Psychiatry, 2019, 85, 1065-1073.	0.7	25
572	Pharmacogenomics: A road ahead for precision medicine in psychiatry. Neuron, 2021, 109, 3914-3929.	3.8	25
573	No evidence for association between a non-synonymous polymorphism in the gene encoding human metabotropic glutamate receptor 7 and schizophrenia. Psychiatric Genetics, 2000, 10, 83-86.	0.6	24
574	Variation in the urokinase-plasminogen activator gene does not explain the chromosome 10 linkage signal for late onset AD. American Journal of Medical Genetics Part A, 2004, 124B, 29-37.	2.4	24
575	Identification of a potential Bipolar risk haplotype in the gene encoding the winged-helix transcription factor RFX4. Molecular Psychiatry, 2005, 10, 920-927.	4.1	24
576	Linkage disequilibrium mapping of bipolar affective disorder at 12q23-q24 provides evidence for association atCUX2 andFLJ32356. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 132B, 38-45.	1.1	24

#	Article	IF	CITATIONS
577	The impact of schizophrenia and mood disorder risk alleles on emotional problems: investigating change from childhood to middle age. Psychological Medicine, 2018, 48, 2153-2158.	2.7	24
578	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 2021, 11, 182.	2.4	24
579	No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study. PLoS Genetics, 2016, 12, e1006343.	1.5	24
580	Expansion of 50 CAG/CTG repeats excluded in schizophrenia by application of a highly efficient approach using repeat expansion detection and a PCR screening set. American Journal of Human Genetics, 1996, 59, 912-7.	2.6	24
581	Experimental analysis of the annotation of promoters in the public database. Human Molecular Genetics, 2002, 11, 1817-1821.	1.4	23
582	Anticipation and repeat expansion in bipolar disorder. American Journal of Medical Genetics Part A, 2003, 123C, 10-17.	2.4	23
583	GENetic and clinical Predictors Of treatment response in Depression: the GenPod randomised trial protocol. Trials, 2008, 9, 29.	0.7	23
584	Moodâ€incongruent psychosis in bipolar disorder: conditional linkage analysis shows genomeâ€wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar Disorders, 2009, 11, 610-620.	1.1	23
585	A neuropsychological investigation of the genome wide associated schizophrenia risk variant NRGN rs12807809. Schizophrenia Research, 2011, 125, 304-306.	1.1	23
586	Severity of depression and response to antidepressants: GENPOD randomised controlled trial. British Journal of Psychiatry, 2012, 200, 130-136.	1.7	23
587	The ENCODE project: implications for psychiatric genetics. Molecular Psychiatry, 2013, 18, 540-542.	4.1	23
588	Functional SNPs are enriched for schizophrenia association signals. Molecular Psychiatry, 2014, 19, 276-277.	4.1	23
589	Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC Medical Genetics, 2016, 17, 34.	2.1	23
590	Polygenic risk for schizophrenia and season of birth within the UK Biobank cohort. Psychological Medicine, 2019, 49, 2499-2504.	2.7	23
591	Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. Molecular Psychiatry, 2021, 26, 2082-2088.	4.1	23
592	Investigating attentionâ€deficit hyperactivity disorder and autism spectrum disorder traits in the general population: What happens in adult life?. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 449-457.	3.1	23
593	A family based study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD). American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 133B, 64-67.	1.1	22
594	Detailed Analysis of the Relative Power of Direct and Indirect Association Studies and the Implications for Their Interpretation. Human Heredity, 2007, 64, 63-73.	0.4	22

#	Article	IF	CITATIONS
595	Complement Factor H Y402H Polymorphism is not Associated with Late-onset Alzheimer's Disease. NeuroMolecular Medicine, 2007, 9, 331-334.	1.8	22
596	Schizophrenia risk variants modulate white matter volume across the psychosis spectrum: Evidence from two independent cohorts. NeuroImage: Clinical, 2015, 7, 764-770.	1.4	22
597	Improving classification of psychoses. Lancet Psychiatry,the, 2016, 3, 367-374.	3.7	22
598	Convergent Evidence That ZNF804A Is a Regulator of Pre-messenger RNA Processing and Gene Expression. Schizophrenia Bulletin, 2019, 45, 1267-1278.	2.3	22
599	Genetic association of FMRP targets with psychiatric disorders. Molecular Psychiatry, 2021, 26, 2977-2990.	4.1	22
600	Expanded CAG/CTG repeats in bipolar disorder: No correlation with phenotypic measures of illness severity. Biological Psychiatry, 1997, 42, 876-881.	0.7	21
601	Evidence to suggest biased phenotypes in children with Attention Deficit Hyperactivity Disorder from completely ascertained trios. Molecular Psychiatry, 2002, 7, 962-966.	4.1	21
602	A High Proportion of Chromosome 21 Promoter Polymorphisms Influence Transcriptional Activity. Gene Expression, 2003, 11, 233-239.	0.5	21
603	Genomic approaches to schizophrenia. Clinical Therapeutics, 2005, 27, S2-S7.	1.1	21
604	The effect of age and the H1c MAPT haplotype on MAPT expression in human brain. Neurobiology of Aging, 2009, 30, 1652-1656.	1.5	21
605	Schizophrenia twoâ€hit hypothesis in veloâ€cardio facial syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 177-182.	1.1	21
606	A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies. American Journal of Human Genetics, 2016, 98, 857-868.	2.6	21
607	Phenotypic Association Analyses With Copy Number Variation in Recurrent Depressive Disorder. Biological Psychiatry, 2016, 79, 329-336.	0.7	21
608	The emergence of psychotic experiences in the early adolescence of 22q11.2 Deletion Syndrome. Journal of Psychiatric Research, 2019, 109, 10-17.	1.5	21
609	Genetic Variation in the Psychiatric Risk Gene CACNA1C Modulates Reversal Learning Across Species. Schizophrenia Bulletin, 2019, 45, 1024-1032.	2.3	21
610	Recent advances in the genetics of preterm birth. Annals of Human Genetics, 2020, 84, 205-213.	0.3	21
611	Schizophrenia Polygenic Risk and Experiences of Childhood Adversity: A Systematic Review and Meta-analysis. Schizophrenia Bulletin, 2022, 48, 967-980.	2.3	21
612	Levels of GABAa receptor subunit mRNA in rat brain following flurazepam treatment. Journal of Psychopharmacology, 1992, 6, 364-369.	2.0	20

#	Article	IF	CITATIONS
613	Permutation-based approaches do not adequately allow for linkage disequilibrium in gene-wide multi-locus association analysis. European Journal of Human Genetics, 2012, 20, 890-896.	1.4	20
614	Copy number variants and therapeutic response to antidepressant medication in major depressive disorder. Pharmacogenomics Journal, 2014, 14, 395-399.	0.9	20
615	Genetic risk for schizophrenia and developmental delay is associated with shape and microstructure of midline white-matter structures. Translational Psychiatry, 2019, 9, 102.	2.4	20
616	Genetic liability to schizophrenia is negatively associated with educational attainment in UK Biobank. Molecular Psychiatry, 2020, 25, 703-705.	4.1	20
617	Rare Copy Number Variants Are Associated With Poorer Cognition in Schizophrenia. Biological Psychiatry, 2021, 90, 28-34.	0.7	20
618	Characterisation of age and polarity at onset in bipolar disorder. British Journal of Psychiatry, 2021, 219, 659-669.	1.7	20
619	Exclusion of CAG/CTG trinucleotide repeat loci which map to chromosome 4 in bipolar disorder and schizophrenia. , 1997, 74, 204-206.		19
620	Mutation screening and LD mapping in the VCFS deleted region of chromosome 22q11 in schizophrenia using a novel DNA pooling approach. Molecular Psychiatry, 2002, 7, 1092-1100.	4.1	19
621	Association analysis of the glial cell line-derived neurotrophic factor (GDNF) gene in schizophrenia. Schizophrenia Research, 2007, 97, 271-276.	1.1	19
622	DISC1 exon 11 rare variants found more commonly in schizoaffective spectrum cases than controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 490-492.	1.1	19
623	Mental disorders of known aetiology and precision medicine in psychiatry: a promising but neglected alliance. Psychological Medicine, 2017, 47, 193-197.	2.7	19
624	Mutation intolerant genes and targets of FMRP are enriched for nonsynonymous alleles in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 724-731.	1.1	19
625	Attention deficit hyperactivity disorder symptoms as antecedents of later psychotic outcomes in 22q11.2 deletion syndrome. Schizophrenia Research, 2019, 204, 320-325.	1.1	19
626	Developmental Contributions of Schizophrenia Risk Alleles and Childhood Peer Victimization to Early-Onset Mental Health Trajectories. American Journal of Psychiatry, 2019, 176, 36-43.	4.0	19
627	Neurotrophin receptor activation rescues cognitive and synaptic abnormalities caused by hemizygosity of the psychiatric risk gene Cacna1c. Molecular Psychiatry, 2021, 26, 1748-1760.	4.1	19
628	Lack of Support for the Genes by Early Environment Interaction Hypothesis in the Pathogenesis of Schizophrenia. Schizophrenia Bulletin, 2022, 48, 20-26.	2.3	19
629	The Genetics of Mental Retardation. British Journal of Psychiatry, 1994, 164, 747-758.	1.7	18
630	The Molecular Genetics of Schizophrenia. Annals of Medicine, 1996, 28, 541-546.	1.5	18

#	Article	IF	CITATIONS
631	Genetics and psychiatry. British Journal of Psychiatry, 1997, 171, 201-202.	1.7	18
632	No association between a polymorphic CAG repeat in the human potassium channel gene hKCa3 and bipolar disorder. , 1999, 88, 57-60.		18
633	Screening ABCG1, the human homologue of the Drosophila white gene, for polymorphisms and association with bipolar affective disorder. Molecular Psychiatry, 2001, 6, 671-677.	4.1	18
634	Genome wide significant linkage in schizophrenia conditioning on occurrence of depressive episodes. Journal of Medical Genetics, 2005, 43, 563-567.	1.5	18
635	IGF1, growth pathway polymorphisms and schizophrenia: A pooling study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 117-120.	1.1	18
636	Cis- and trans- loci influence expression of the schizophrenia susceptibility gene DTNBP1. Human Molecular Genetics, 2008, 17, 1169-1174.	1.4	18
637	No evidence that rare coding variants in <i>ZNF804A</i> confer risk of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1411-1416.	1.1	18
638	Fineâ€mapping reveals novel alternative splicing of the dopamine transporter. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1434-1447.	1.1	18
639	Risk variant of oligodendrocyte lineage transcription factor 2 is associated with reduced white matter integrity. Human Brain Mapping, 2013, 34, 2025-2031.	1.9	18
640	Genetic predictors of antidepressant side effects: A grouped candidate gene approach in the Genome-Based Therapeutic Drugs for Depression (GENDEP) study. Journal of Psychopharmacology, 2014, 28, 142-150.	2.0	18
641	Converging evidence does not support <i>GIT1</i> as an ADHD risk gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 492-507.	1.1	18
642	Polygenic risk for circulating reproductive hormone levels and their influence on hippocampal volume and depression susceptibility. Psychoneuroendocrinology, 2019, 106, 284-292.	1.3	18
643	A brief report: de novo copy number variants in children with attention deficit hyperactivity disorder. Translational Psychiatry, 2020, 10, 135.	2.4	18
644	Explaining the missing heritability of psychiatric disorders. World Psychiatry, 2021, 20, 294-295.	4.8	18
645	Effects of eight neuropsychiatric copy number variants on human brain structure. Translational Psychiatry, 2021, 11, 399.	2.4	18
646	Phorbol ester-induced expression and function of the interleukin 2 receptor in human B lymphocytes. European Journal of Immunology, 1985, 15, 341-344.	1.6	17
647	CTG18.1 and ERDA-1 CAG/CTG Repeat Size in Bipolar Disorder. Neurobiology of Disease, 1999, 6, 302-307.	2.1	17
648	Comparative sequencing and association studies of aromatic L-amino acid decarboxylase in schizophrenia and bipolar disorder. Molecular Psychiatry, 2000, 5, 327-331.	4.1	17

#	Article	IF	CITATIONS
649	Searching for susceptibility genes in schizophrenia. European Neuropsychopharmacology, 2001, 11, 395-398.	0.3	17
650	Genome scans and microarrays: converging on genes for schizophrenia?. Genome Biology, 2002, 3, reviews1011.1.	13.9	17
651	The mentally handicapped person with epilepsy: a comparative study investigating psychosocial functioning. Journal of Intellectual Disability Research, 2008, 33, 123-135.	1.2	17
652	Variation at the GABA _A receptor gene, Rho 1 (<i>GABRR1</i>) associated with susceptibility to bipolar schizoaffective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1347-1349.	1.1	17
653	Effects of DTNBP1 genotype on brain development in children. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2011, 52, 1287-1294.	3.1	17
654	Investigation of rare non-synonymous variants at ABCA13 in schizophrenia and bipolar disorder. Molecular Psychiatry, 2011, 16, 790-791.	4.1	17
655	No evidence that extended tracts of homozygosity are associated with Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 764-771.	1.1	17
656	The health informatics cohort enhancement project (HICE): using routinely collected primary care data to identify people with a lifetime diagnosis of psychotic disorder. BMC Research Notes, 2012, 5, 95.	0.6	17
657	Age at first birth in women is genetically associated with increased risk of schizophrenia. Scientific Reports, 2018, 8, 10168.	1.6	17
658	Schizophrenia, CATCH 22 and FISH. British Journal of Psychiatry, 1996, 168, 397-398.	1.7	17
659	Both splicing variants of the dopamine D2 receptor mRNA are up-regulated by antipsychotic drugs. Neuroscience Letters, 1993, 150, 25-28.	1.0	16
660	CUX2, a potential regulator of NCAM expression: Genomic characterization and analysis as a positional candidate susceptibility gene for bipolar disorder. American Journal of Medical Genetics Part A, 2001, 105, 295-300.	2.4	16
661	Genetic Classification of Populations Using Supervised Learning. PLoS ONE, 2011, 6, e14802.	1.1	16
662	Association between <i>TCF4</i> and schizophrenia does not exert its effect by common nonsynonymous variation or by influencing <i>cis</i> â€acting regulation of mRNA expression in adult human brain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 781-784.	1.1	16
663	Response to â€~Predicting the diagnosis of autism spectrum disorder using gene pathway analysis'. Molecular Psychiatry, 2014, 19, 860-861.	4.1	16
664	Genetic susceptibility for bipolar disorder and response to antidepressants in major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 77-83.	1.1	16
665	Towards diagnostic markers for the psychoses. Lancet Psychiatry,the, 2016, 3, 375-385.	3.7	16
666	Reinforcement learning as an intermediate phenotype in psychosis? Deficits sensitive to illness stage but not associated with polygenic risk of schizophrenia in the general population. Schizophrenia Research, 2020, 222, 389-396.	1.1	16

#	Article	IF	CITATIONS
667	Association of genetic liability for psychiatric disorders with accelerometer-assessed physical activity in the UK Biobank. PLoS ONE, 2021, 16, e0249189.	1.1	16
668	Expanded CAG/CTG Repeats in Schizophrenia. British Journal of Psychiatry, 1996, 169, 766-771.	1.7	15
669	Convergent patterns of association between phenylalanine hydroxylase variants and schizophrenia in four independent samples. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 560-569.	1.1	15
670	Mosaic copy number variation in schizophrenia. European Journal of Human Genetics, 2013, 21, 1007-1011.	1.4	15
671	Investigating the genetic variation underlying episodicity in major depressive disorder: Suggestive evidence for a bipolar contribution. Journal of Affective Disorders, 2014, 155, 81-89.	2.0	15
672	What can we learn from the high rates of schizophrenia in people with 22q11.2 deletion syndrome?. World Psychiatry, 2016, 15, 23-25.	4.8	15
673	Schizophrenia copy number variants and associative learning. Molecular Psychiatry, 2017, 22, 178-182.	4.1	15
674	Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Molecular Psychiatry, 2021, 26, 5239-5250.	4.1	15
675	Exclusion of expansion of 50 CAG/CTG trinucleotide repeats in bipolar disorder. American Journal of Psychiatry, 1997, 154, 1146-1147.	4.0	14
676	Association analysis of two candidate phospholipase genes that map to the chromosome 15q15.1-15.3 region associated with reading disability. American Journal of Medical Genetics Part A, 2004, 129B, 97-103.	2.4	14
677	Investigating cis-acting regulatory variation using assays of relative allelic expression. Psychiatric Genetics, 2006, 16, 173-177.	0.6	14
678	Chromosome 22 Deletion Syndrome And Schizophrenia. International Review of Neurobiology, 2006, 73, 1-27.	0.9	14
679	Validity of the Concept of Minor Depression in a Developing Country Setting. Journal of Nervous and Mental Disease, 2008, 196, 22-28.	0.5	14
680	Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 929-940.	1.1	14
681	A national population-based e-cohort of people with psychosis (PsyCymru) linking prospectively ascertained phenotypically rich and genetic data to routinely collected records: Overview, recruitment and linkage. Schizophrenia Research, 2015, 166, 131-136.	1.1	14
682	Associations between schizophrenia genetic risk, anxiety disorders and manic/hypomanic episode in a longitudinal population cohort study. British Journal of Psychiatry, 2019, 214, 96-102.	1.7	14
683	Evidence, and replication thereof, that molecular-genetic and environmental risks for psychosis impact through an affective pathway. Psychological Medicine, 2022, 52, 1910-1922.	2.7	14
684	Large-Scale Genomics: A Paradigm Shift in Psychiatry?. Biological Psychiatry, 2021, 89, 5-7.	0.7	14

#	Article	IF	CITATIONS
685	Streamlined Approach to Functional Analysis of Promoter-Region Polymorphisms. BioTechniques, 2002, 33, 412-418.	0.8	13
686	An association study of the neurotensin receptor gene with schizophrenia and clozapine response. Schizophrenia Research, 2004, 66, 193-195.	1.1	13
687	Linkage disequilibrium structure of KIAA0319 and DCDC2, two candidate susceptibility genes for developmental dyslexia. Molecular Psychiatry, 2006, 11, 1061-1061.	4.1	13
688	Dysbindin modulates brain function during visual processing in children. NeuroImage, 2010, 49, 817-822.	2.1	13
689	Analysis of neurogranin (<i>NRGN</i>) in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 532-535.	1.1	13
690	The Research Domain Criteria: moving the goalposts to change the game. British Journal of Psychiatry, 2014, 204, 171-173.	1.7	13
691	A Breakthrough in Schizophrenia Genetics. JAMA Psychiatry, 2014, 71, 1319.	6.0	13
692	Clozapine Metabolism is Associated With Absolute Neutrophil Count in Individuals With Treatment-Resistant Schizophrenia. Frontiers in Pharmacology, 2021, 12, 658734.	1.6	13
693	Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Molecular Psychiatry, 2023, 28, 1995-2006.	4.1	13
694	Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms. Translational Psychiatry, 2021, 11, 313.	2.4	13
695	Bioethics and genetic research in psychiatry. British Journal of Psychiatry, 2000, 176, 105-108.	1.7	12
696	Variation in the protocadherin \hat{I}^3 A gene clusterâ ⁻ †. Genomics, 2003, 82, 433-440.	1.3	12
697	Identifying schizophrenia patients who carry pathogenic genetic copy number variants using standard clinical assessment: retrospective cohort study. British Journal of Psychiatry, 2020, 216, 275-279.	1.7	12
698	HLA-DQB1 6672G>C (rs113332494) is associated with clozapine-induced neutropenia and agranulocytosis in individuals of European ancestry. Translational Psychiatry, 2021, 11, 214.	2.4	12
699	Clinical evaluation of patients with a neuropsychiatric risk copy number variant. Current Opinion in Genetics and Development, 2021, 68, 26-34.	1.5	12
700	The continuity of effect of schizophrenia polygenic risk score and patterns of cannabis use on transdiagnostic symptom dimensions at first-episode psychosis: findings from the EU-GEI study. Translational Psychiatry, 2021, 11, 423.	2.4	12
701	Post-partum psychosis and its association with bipolar disorder in the UK: a case-control study using polygenic risk scores. Lancet Psychiatry,the, 2021, 8, 1045-1052.	3.7	12
702	"Late-onset―ADHD symptoms in young adulthood: Is this ADHD?. Journal of Attention Disorders, 2022, 26, 1271-1282.	1.5	12

#	Article	IF	CITATIONS
703	The future of psychiatric genetics. Annals of Medicine, 2003, 35, 122-134.	1.5	11
704	Schizophrenia: complex genetics, not fairy tales. Psychological Medicine, 2008, 38, 1697-1699.	2.7	11
705	The Duffy-null genotype and risk of infection. Human Molecular Genetics, 2020, 29, 3341-3349.	1.4	11
706	Coordination difficulties, IQ and psychopathology in children with high-risk copy number variants. Psychological Medicine, 2021, 51, 290-299.	2.7	11
707	Complement C3 and C3aR mediate different aspects of emotional behaviours; relevance to risk for psychiatric disorder. Brain, Behavior, and Immunity, 2022, 99, 70-82.	2.0	11
708	What makes the psychosis â€~clinical high risk' state risky: psychosis itself or the co-presence of a non-psychotic disorder?. Epidemiology and Psychiatric Sciences, 2021, 30, e53.	1.8	11
709	Single-Nuclei RNA Sequencing of 5 Regions of the Human Prenatal Brain Implicates Developing Neuron Populations in Genetic Risk for Schizophrenia. Biological Psychiatry, 2023, 93, 157-166.	0.7	11
710	Repeat sizes at CAG/CTG loci CTG18.1, ERDA1 and TGC13-7a in schizophrenia. Psychiatric Genetics, 2000, 10, 33-37.	0.6	10
711	An Examination of Single Nucleotide Polymorphism Selection Prioritization Strategies for Tests of Gene–Gene Interaction. Biological Psychiatry, 2011, 70, 198-203.	0.7	10
712	Gender differences in CNV burden do not confound schizophrenia CNV associations. Scientific Reports, 2016, 6, 25986.	1.6	10
713	Effects of MiRâ€137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 369-376.	1.1	10
714	The Relationship Between Common Variant Schizophrenia Liability and Number of Offspring in the UK Biobank. American Journal of Psychiatry, 2019, 176, 661-666.	4.0	10
715	Characterization of Single Gene Copy Number Variants in Schizophrenia. Biological Psychiatry, 2020, 87, 736-744.	0.7	10
716	A replication study of JTC bias, genetic liability for psychosis and delusional ideation. Psychological Medicine, 2022, 52, 1777-1783.	2.7	10
717	Movement Disorder Phenotypes in Children With 22q11.2 Deletion Syndrome. Movement Disorders, 2020, 35, 1272-1274.	2.2	10
718	A Mendelian randomization study of the causal association between anxiety phenotypes and schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 360-369.	1.1	10
719	Prioritizing Genetic Contributors to Cortical Alterations in 22q11.2 Deletion Syndrome Using Imaging Transcriptomics. Cerebral Cortex, 2021, 31, 3285-3298.	1.6	10
720	Genome-wide analyses of smoking behaviors in schizophrenia: Findings from the Psychiatric Genomics Consortium. Journal of Psychiatric Research, 2021, 137, 215-224.	1.5	10

#	Article	IF	CITATIONS
721	Developmental Profile of Psychiatric Risk Associated With Voltage-Gated Cation Channel Activity. Biological Psychiatry, 2021, 90, 399-408.	0.7	10
722	Examining facial emotion recognition as an intermediate phenotype for psychosis: Findings from the EUGEI study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 113, 110440.	2.5	10
723	Advances and Retreats in the Molecular Genetics of Major Mental Illness. Annals of Medicine, 1992, 24, 171-177.	1.5	9
724	Mutational analysis of two positional candidate susceptibility genes for bipolar disorder on chromosome 12q23-q24. Psychiatric Genetics, 2003, 13, 97-101.	0.6	9
725	<i>DISC1</i> mRNA expression is not influenced by common <i>Cis</i> â€acting regulatory polymorphisms or imprinting. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1065-1069.	1.1	9
726	Analysis of copy number variation using quantitative interspecies competitive PCR. Nucleic Acids Research, 2008, 36, e112-e112.	6.5	9
727	Molecular genetics and the relationship between epilepsy and psychosis. British Journal of Psychiatry, 2010, 197, 75-76.	1.7	9
728	Is there a schizophrenia to diagnose?. World Psychiatry, 2011, 10, 34-35.	4.8	9
729	A dataâ€driven investigation of relationships between bipolar psychotic symptoms and schizophrenia genomeâ€wide significant genetic loci. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 468-475.	1.1	9
730	Using induced pluripotent stem cells to investigate human neuronal phenotypes in 1q21.1 deletion and duplication syndrome. Molecular Psychiatry, 2022, 27, 819-830.	4.1	9
731	Use of multiple polygenic risk scores for distinguishing schizophrenia-spectrum disorder and affective psychosis categories in a first-episode sample; the EU-GEI study. Psychological Medicine, 2023, 53, 3396-3405.	2.7	9
732	Facial Emotion Recognition in Psychosis and Associations With Polygenic Risk for Schizophrenia: Findings From the Multi-Center EU-GEI Case–Control Study. Schizophrenia Bulletin, 2022, 48, 1104-1114.	2.3	9
733	Symptom dimensions and the Kraepelinian dichotomy. British Journal of Psychiatry, 2007, 190, 361-361.	1.7	8
734	Psychiatric classification – a developmental perspective. British Journal of Psychiatry, 2015, 207, 281-282.	1.7	8
735	Schizophrenia Genetics: Building the Foundations of the Future. Schizophrenia Bulletin, 2015, 41, 15-19.	2.3	8
736	Electrophysiological network alterations in adults with copy number variants associated with high neurodevelopmental risk. Translational Psychiatry, 2020, 10, 324.	2.4	8
737	Molecular Genetics and the Kraepelinian Dichotomy: One Disorder, Two Disorders, or Do We Need to Start Thinking Afresh?. Psychiatric Annals, 2010, 40, 88-91.	0.1	8
738	Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants. Nature Communications, 2022, 13, 27.	5.8	8

#	Article	IF	CITATIONS
739	Title is missing!. Psychiatric Genetics, 2003, 13, 107-110.	0.6	7
740	Polymorphisms in the phosphate and tensin homolog gene are not associated with late-onset Alzheimer's disease. Neuroscience Letters, 2006, 401, 77-80.	1.0	7
741	Failure to confirm association between <i>PIK4CA</i> and psychosis in 22q11.2 deletion syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 980-982.	1.1	7
742	Assessment of emotions and behaviour by the Developmental Behaviour Checklist in young people with neurodevelopmental CNVs. Psychological Medicine, 2022, 52, 574-586.	2.7	7
743	Examining pathways between genetic liability for schizophrenia and patterns of tobacco and cannabis use in adolescence. Psychological Medicine, 2022, 52, 132-139.	2.7	7
744	Morphometric Analysis of Structural MRI Using Schizophrenia Meta-analytic Priors Distinguish Patients from Controls in Two Independent Samples and in a Sample of Individuals With High Polygenic Risk. Schizophrenia Bulletin, 2022, 48, 524-532.	2.3	7
745	Investigation of convergent and divergent genetic influences underlying schizophrenia and alcohol use disorder. Psychological Medicine, 2023, 53, 1196-1204.	2.7	7
746	Introducing Selfcite 2.0career enhancing software. BMJ: British Medical Journal, 1996, 313, 1659-1660.	2.4	7
747	The dynamic interplay between sleep and mood: an intensive longitudinal study of individuals with bipolar disorder. Psychological Medicine, 2023, 53, 3345-3354.	2.7	7
748	Investigating Direct and Indirect Genetic Effects in Attention-Deficit/Hyperactivity Disorder Using Parent-Offspring Trios. Biological Psychiatry, 2023, 93, 37-44.	0.7	7
749	The effects of antidepressant drugs on kainate receptor mRNA levels. Neuropharmacology, 1991, 30, 675-677.	2.0	6
750	Involvement of expanded trinucleotide repeats in common diseases. Lancet, The, 1996, 348, 1739-1740.	6.3	6
751	Lack of functional promoter polymorphisms in genes involved in glutamate neurotransmission. Psychiatric Genetics, 2003, 13, 193-199.	0.6	6
752	Genes and Behavior: Nature–Nurture Interplay Explained By Michael Rutter. Oxford: Blackwell. 2006. 272pp. £14.99 (pb). ISBN 1405110619. British Journal of Psychiatry, 2006, 189, 192-193.	1.7	6
753	Phenotypic variation between parent–offspring trios and non-trios in genetic studies of schizophrenia. Journal of Psychiatric Research, 2006, 40, 622-626.	1.5	6
754	Mutation screening of the <i>DTNBP1</i> exonic sequence in 669 schizophrenics and 710 controls using highâ€resolution melting analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 766-774.	1.1	6
755	An examination of MUTED as a schizophrenia susceptibility gene. Schizophrenia Research, 2009, 107, 110-111.	1.1	6
756	Genome-wide Association Study Identifies Genetic Variation in Neurocan as a Susceptibility Factor for Bipolar Disorder. American Journal of Human Genetics, 2011, 88, 396.	2.6	6

#	Article	IF	CITATIONS
757	The psychiatric phenotypes of 1q21 distal deletion and duplication. Translational Psychiatry, 2021, 11, 105.	2.4	6
758	Global Brain Flexibility During Working Memory Is Reduced in a High-Genetic-Risk Group for Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 1176-1184.	1.1	6
759	Psychopathology in adults with copy number variants. Psychological Medicine, 2023, 53, 3142-3149.	2.7	6
760	Lack of effect of chronic antipsychotic treatment on dopamine D5 receptor mRNA level. European Neuropsychopharmacology, 1992, 2, 405-409.	0.3	5
761	Bias in the genomic distribution of CAG and CTG trinucleotide repeats. , 1997, 74, 62-64.		5
762	Genetics and the brain: many pathways to enlightenment. Human Genetics, 2009, 126, 1-2.	1.8	5
763	Absence of de novo point mutations in exons of GRIN2B in a large schizophrenia trio sample. Schizophrenia Research, 2012, 141, 274-276.	1.1	5
764	The Relationship Between Common Variant Schizophrenia Liability and Number of Offspring in the UK Biobank: Response to Lawn et al American Journal of Psychiatry, 2019, 176, 574-575.	4.0	5
765	Sex differences in anxiety and depression in children with attention deficit hyperactivity disorder: Investigating genetic liability and comorbidity. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 412-422.	1.1	5
766	No evidence of association between HLA-DRB1 and attention deficit hyperactivity disorder. Psychiatric Genetics, 2003, 13, 183-185.	0.6	4
767	Reply to Bertram et al American Journal of Human Genetics, 2006, 79, 183-184.	2.6	4
768	No Evidence for Enrichment in Schizophrenia for Common Allelic Associations at Imprinted Loci. PLoS ONE, 2015, 10, e0144172.	1.1	4
769	No Effect of Genome-Wide Significant Schizophrenia Risk Variation at the <i>DRD2</i> Locus on the Allelic Expression of <i>DRD2</i> in Postmortem Striatum. Molecular Neuropsychiatry, 2019, 5, 212-217.	3.0	4
770	Contribution of de novo and inherited rare CNVs to very preterm birth. Journal of Medical Genetics, 2020, 57, 552-557.	1.5	4
771	Risk Factors, Clinical Features, and Polygenic Risk Scores in Schizophrenia and Schizoaffective Disorder Depressive-Type. Schizophrenia Bulletin, 2021, 47, 1375-1384.	2.3	4
772	Examining sex differences in neurodevelopmental and psychiatric genetic risk in anxiety and depression. PLoS ONE, 2021, 16, e0248254.	1.1	4
773	The nature of schizophrenia: As broad as it is long. Schizophrenia Research, 2022, 242, 109-112.	1.1	4
774	Polydactyly and psychosis. British Journal of Psychiatry, 1998, 172, 184-185.	1.7	3

MICHAEL C O'DONOVAN

#	Article	IF	CITATIONS
775	No evidence of association from transmission disequilibrium analysis of the hKCa3 gene in bipolar disorder. Bipolar Disorders, 2000, 2, 328-331.	1.1	3
776	Linkage analysis in an autosomal dominant â€~zonular nuclear pulverulent' congenital cataract, mapped to chromosome 13q11-13. Eye, 2000, 14, 172-175.	1.1	3
777	Direct analysis of the genes encoding G proteins G?T2, G?o, G?Z in ADHD. American Journal of Medical Genetics Part A, 2004, 127B, 68-72.	2.4	3
778	Genetics of schizophrenia. Psychiatry (Abingdon, England), 2005, 4, 14-17.	0.2	3
779	Association analysis of dynaminâ€binding protein (<i>DNMBP</i>) on chromosome 10q with late onset Alzheimer's disease in a large caucasian UK sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 61-64.	1.1	3
780	Using kinematic analyses to explore sensorimotor control impairments in children with 22q11.2 deletion syndrome. Journal of Neurodevelopmental Disorders, 2019, 11, 8.	1.5	3
781	Genetic risk for schizophrenia is associated with altered visually-induced gamma band activity: evidence from a population sample stratified polygenic risk. Translational Psychiatry, 2021, 11, 592.	2.4	3
782	Association between functional psychosis and expanded CAG/CTG repeats is not explained by health stratification. Psychiatric Genetics, 1998, 8, 29-32.	0.6	2
783	Association analysis of the proneurotensin gene and bipolar disorder. Psychiatric Genetics, 2000, 10, 51-54.	0.6	2
784	Genome-wide Significant Associations for Cannabis Dependence Severity. JAMA Psychiatry, 2016, 73, 443.	6.0	2
785	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. Biological Psychiatry, 2016, 80, 84-86.	0.7	2
786	Psychiatric genetics: what's new in 2015?. Lancet Psychiatry,the, 2016, 3, 10-12.	3.7	2
787	5.4 BIOLOGICAL AND EPIDEMIOLOGICAL EXAMINATION OF TRANSDIAGNOSTIC AND SPECIFIC SYMPTOM DIMENSIONS AT PSYCHOSIS ONSET: FINDINGS FROM THE EUGEI STUDY. Schizophrenia Bulletin, 2018, 44, S7-S7.	2.3	2
788	Populationâ€based identityâ€byâ€descent mapping combined with exome sequencing to detect rare risk variants for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 223-231.	1.1	2
789	Impact of schizophrenia genetic liability on the association between schizophrenia and physical illness: data-linkage study. BJPsych Open, 2020, 6, e139.	0.3	2
790	Atypical antipsychotics elevate dopamine D3 but not D1 or D2 receptor mRNA levels in rat brain. European Neuropsychopharmacology, 1992, 2, 348.	0.3	1
791	Genetic Risk Factors for Schizophrenia. International Journal of Mental Health, 2000, 29, 13-38.	0.5	1
792	Genetics of schizophrenia. Psychiatry (Abingdon, England), 2008, 7, 415-420.	0.2	1

#	Article	IF	CITATIONS
793	Letter to the Editor: Strong evidence for multiple psychosis susceptibility genes – a rejoinder to Crow. Psychological Medicine, 2009, 39, 170-171.	2.7	1
794	Structural variations in attention-deficit hyperactivity disorder – Authors' reply. Lancet, The, 2011, 377, 378.	6.3	1
795	Non-random mating, parent-of-origin, and maternal–fetal incompatibility effects in schizophrenia. Schizophrenia Research, 2013, 143, 11-17.	1.1	1
796	Exploring the indirect effects of catecholâ€Oâ€methyltransferase (<i>COMT</i>) genotype on psychotic experiences through cognitive function and anxiety disorders in a large birth cohort of children. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 410-420.	1.1	1
797	Authors' reply. British Journal of Psychiatry, 2014, 205, 78-78.	1.7	1
798	Novel genetic advances in schizophrenia: an interview with Michael O'Donovan. BMC Medicine, 2015, 13, 181.	2.3	1
799	Genomeâ€wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 767-771.	1.1	1
800	Letter to the editor: Is polygenic risk for Parkinson's disease associated with less risk of first episode psychosis?. Psychological Medicine, 2020, 50, 173-176.	2.7	1
801	A Developmental Perspective on the Convergence of Genetic Risk Factors for Neuropsychiatric Disorders. Biological Psychiatry, 2020, 87, 98-99.	0.7	1
802	Pilot study to establish a prospective neonatal cohort: Study of Preterm Infants and Neurodevelopmental Genes (SPRING). BMJ Paediatrics Open, 2020, 4, e000648.	0.6	1
803	Genetics, chance and dysmorphogenesis in schizophrenia. British Journal of Psychiatry, 1994, 165, 694-695.	1.7	1
804	THE EXPRESSION OF NEURORECEPTOR GENES AND BENZODIAZEPINE TOLERANCE. Clinical Neuropharmacology, 1992, 15, 218A-219A.	0.2	0
805	Tryptophan pyrrolase gene expression in an alcohol preferring and non-preferring mouse strain. Addiction Biology, 1998, 3, 71-77.	1.4	Ο
806	CHAPTER 5.4 Finding liability genes for schizophrenia. Handbook of Behavioral Neuroscience, 1999, 13, 805-819.	0.0	0
807	Neurogenetics. , 0, , 167-180.		Ο
808	Genetic mapping approaches in neuropsychiatry. Psychiatry (Abingdon, England), 2005, 4, 22-26.	0.2	0
809	ISDN2014_0211: An fMRI study of facial emotion processing in children and adolescents with 22q11.2 deletion syndrome. International Journal of Developmental Neuroscience, 2015, 47, 63-63.	0.7	0
810	Schizophrenia polygenic risk score and psychotic risk detection–Authors' reply. Lancet Psychiatry,the, 2017, 4, 188-189.	3.7	0

#	Article	IF	CITATIONS
811	[P2–110]: NOVEL APPROACH TO GENEâ€BASED ANALYSIS OF ALZHEIMER's DISEASE INFORMED BY GENETICS PSYCHIATRIC DISORDERS. Alzheimer's and Dementia, 2017, 13, P649.	0F 0.4	0
812	Pamela Sklar 1959–2017. Nature Neuroscience, 2018, 21, 151-151.	7.1	0
813	P017â€Differences in genetic risk for insomnia, hypersomnia and chronotype in bipolar disorder subtypes. , 2019, , .		0
814	Response to letter to editor: "Knowing when and how to use epilepsy screening questionnaires― Epilepsia, 2020, 61, 826-827.	2.6	0
815	Mental Health Research, shared goals. Journal of Mental Health, 2023, 32, 1017-1017.	1.0	0
816	Genes for schizophrenia and beyond. , 2006, , 119-126.		0
817	Schizophrenia and Bipolar Disorder. , 2013, , 1051-1058.		0
818	Sib-pairs with psychosis. Psychiatric Bulletin, 1996, 20, 443-443.	0.3	0