
Gao xiangxiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9921240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microenvironment Engineering of Ru Singleâ€Atom Catalysts by Regulating the Cation Vacancies in NiFeâ€Layered Double Hydroxides. Advanced Functional Materials, 2022, 32, 2109218.	7.8	44
2	Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nature Communications, 2022, 13, .	5.8	54
3	First-principles study of N2O decomposition on (001) facet of perovskite LaBO3 (BÂ=ÂMn, Co, Ni). Molecular Catalysis, 2021, 510, 111713.	1.0	3
4	Ar/H ₂ /O ₂ â€Controlled Growth Thermodynamics and Kinetics to Create Zeroâ€, Oneâ€, and Twoâ€Dimensional Ruthenium Nanocrystals towards Acidic Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2007344.	7.8	16
5	Facet effect of Bi ₅ O ₇ I nanocrystals on selective oxidation of benzylamine under visible light. Catalysis Science and Technology, 2021, 11, 6947-6951.	2.1	5
6	A multiphase nickel iron sulfide hybrid electrode for highly active oxygen evolution. Science China Materials, 2020, 63, 356-363.	3.5	23
7	Hollow Mesoporous Metal–Organic Frameworks with Enhanced Diffusion for Highly Efficient Catalysis. ACS Catalysis, 2020, 10, 5973-5978.	5.5	95
8	Atomically Dispersed Nickel(I) on an Alloyâ€Encapsulated Nitrogenâ€Doped Carbon Nanotube Array for Highâ€Performance Electrochemical CO ₂ Reduction Reaction. Angewandte Chemie, 2020, 132, 12153-12159.	1.6	27
9	Atomically Dispersed Nickel(I) on an Alloyâ€Encapsulated Nitrogenâ€Doped Carbon Nanotube Array for Highâ€Performance Electrochemical CO ₂ Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 12055-12061.	7.2	117
10	Electrochemical heavy metal removal from water using PVC waste-derived N, S co-doped carbon materials. RSC Advances, 2020, 10, 4064-4070.	1.7	17
11	Amorphous Ruthenium‣ulfide with Isolated Catalytic Sites for Pt‣ike Electrocatalytic Hydrogen Production Over Whole pH Range. Small, 2019, 15, e1904043.	5.2	71
12	Hydrogen Production: Amorphous Ruthenium‣ulfide with Isolated Catalytic Sites for Pt‣ike Electrocatalytic Hydrogen Production Over Whole pH Range (Small 46/2019). Small, 2019, 15, 1970249.	5.2	0
13	Synthesis and performance optimization of ultrathin two-dimensional CoFePt alloy materials <i>via in situ</i> topotactic conversion for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 9517-9522.	5.2	17
14	Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the United States of America, 2019, 116, 6624-6629.	3.3	524
15	Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nature Communications, 2019, 10, 1711.	5.8	446
16	Inductive Effect in Mn-Doped NiO Nanosheet Arrays for Enhanced Capacitive and Highly Stable Hybrid Supercapacitor. ACS Applied Energy Materials, 2019, 2, 2072-2079.	2.5	65
17	A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide. Science China Materials, 2018, 61, 939-947.	3.5	69
18	Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials, 2018, 8, 1703341.	10.2	505

GAO XIANGXIANG

#	Article	IF	CITATIONS
19	Layered double hydroxides with atomic-scale defects for superior electrocatalysis. Nano Research, 2018, 11, 4524-4534.	5.8	130
20	Singleâ€Crystalline Ultrathin Co ₃ O ₄ Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis. Advanced Energy Materials, 2018, 8, 1701694.	10.2	451
21	Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research, 2018, 11, 1358-1368.	5.8	134
22	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie, 2018, 130, 9536-9540.	1.6	86
23	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie - International Edition, 2018, 57, 9392-9396.	7.2	284
24	Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Research, 2017, 10, 1732-1739.	5.8	139
25	Carbon coated Au/TiO2 mesoporous microspheres: a novel selective photocatalyst. Science China Materials, 2017, 60, 438-448.	3.5	25
26	Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy. Nano Research, 2017, 10, 2988-2997.	5.8	38
27	Investigation for the synthesis of hierarchical Co3O4@MnO2 nanoarrays materials and their application for supercapacitor. Journal of Materials Science: Materials in Electronics, 2017, 28, 1281-1287.	1.1	17
28	Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity. Nano Research, 2016, 9, 3152-3161.	5.8	30
29	Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chemical Communications, 2016, 52, 908-911.	2.2	293
30	Singleâ€Crystalline Ultrathin Nickel Nanosheets Array from Inâ€Situ Topotactic Reduction for Active and Stable Electrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 693-697.	7.2	225
31	Morphology and Phase Evolution of CoAl Layered Double Hydroxides in an Alkaline Environment with Enhanced Pseudocapacitive Performance. ChemElectroChem, 2015, 2, 679-683.	1.7	16
32	A First-Principles Study of Oxygen Formation Over NiFe-Layered Double Hydroxides Surface. Catalysis Letters, 2015, 145, 1541-1548.	1.4	61
33	Room-temperature synthetic NiFe layered double hydroxide with different anions intercalation as an excellent oxygen evolution catalyst. RSC Advances, 2015, 5, 55131-55135.	1.7	77
34	First-Principles Study of Oxygen Evolution Reaction on the Oxygen-Containing Species Covered Coll-Exposing Co3O4 (100) Surface. Catalysis Letters, 2015, 145, 1169-1176.	1.4	18
35	Trinary Layered Double Hydroxides as Highâ€Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials, 2015, 5, 1500245.	10.2	328
36	Hierarchical nanoarray materials for advanced nickel–zinc batteries. Inorganic Chemistry Frontiers, 2015, 2, 184-187.	3.0	88

GAO XIANGXIANG

#	Article	IF	CITATIONS
37	Theoretical study of N 2 O decomposition mechanism over binuclear Cu-ZSM-5 zeolites. Journal of Molecular Catalysis A, 2015, 396, 181-187.	4.8	18
38	Effect of internal noise on the oscillation of N2O decomposition over Cu-ZSM-5 zeolites using a stochastic description. Journal of Chemical Physics, 2014, 140, 044715.	1.2	1
39	Au/NiCo ₂ O ₄ Arrays with High Activity for Water Oxidation. ChemCatChem, 2014, 6, 2501-2506.	1.8	60
40	A 3D Nanoporous Ni-Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 2014, 1, 1089-1089.	1.7	1
41	Local Electric Field Effect of TMI (Fe, Co, Cu)-BEA on N ₂ 0 Direct Dissociation. Journal of Physical Chemistry C, 2014, 118, 10944-10956.	1.5	27
42	A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 2014, 1, 1138-1144.	1.7	113
43	NiTi layered double hydroxide thin films for advanced pseudocapacitor electrodes. Journal of Materials Chemistry A, 2013, 1, 10655.	5.2	70
44	Density Functional Theory Study of Mechanism of N ₂ O Decomposition over Cu-ZSM-5 Zeolites. Journal of Physical Chemistry C, 2012, 116, 20262-20268.	1.5	26
45	Noise-induced effective oscillation in oil-water membrane oscillator. Journal of Chemical Physics, 2008, 129, 194902.	1.2	5