

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/992119/publications.pdf Version: 2024-02-01

IIF MIN

#	Article	IF	CITATIONS
1	Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells. National Science Review, 2022, 9, nwab151.	4.6	41
2	Synthesis of zwitterionic polymer and its application in textile stiffening finish. Journal of Applied Polymer Science, 2022, 139, 51560.	1.3	0
3	A kelpâ€inspired polyester fabric surface of <scp>UV</scp> grafted hydrogel for drag reduction. Journal of Applied Polymer Science, 2022, 139, 51634.	1.3	2
4	A New End Group on Nonfullerene Acceptors Endows Efficient Organic Solar Cells with Low Energy Losses. Advanced Functional Materials, 2022, 32, 2108614.	7.8	56
5	Cationic core/shell polysiloxane acrylate emulsion: synthesis, film morphology, and performance on cotton pigment coloration. Cellulose, 2022, 29, 2093-2106.	2.4	1
6	Compromising Charge Generation and Recombination with Asymmetric Molecule for Highâ€Performance Binary Organic Photovoltaics with Over 18% Certified Efficiency. Advanced Functional Materials, 2022, 32, .	7.8	62
7	Revealing the microstructure-related light-induced degradation for all-polymer solar cells based on regioisomerized end-capping group acceptors. Journal of Materials Chemistry C, 2022, 10, 1246-1258.	2.7	10
8	Understanding the molecular mechanisms of the differences in the efficiency and stability of all-polymer solar cells. Journal of Materials Chemistry C, 2022, 10, 1850-1861.	2.7	9
9	Efficient charge generation and low open circuit voltage loss enable a PCE of 10.3% in small molecule donor and polymer acceptor organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2639-2647.	2.7	2
10	Theoretical analysis of the relationship between color and efficiency of the opaque and semitransparent organic photovoltaics. Solar Energy, 2022, 233, 153-160.	2.9	0
11	Achieving 12.6% Efficiency in Single omponent Organic Solar Cells Processed from Nonhalogenated Solvents. Solar Rrl, 2022, 6, .	3.1	16
12	Simultaneous Enhanced Device Efficiency and Color Neutrality in Semitransparent Organic Photovoltaics Employing a Synergy of Ternary Strategy and Optical Engineering. Advanced Functional Materials, 2022, 32, .	7.8	30
13	Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule, 2022, 6, 662-675.	11.7	212
14	An end-capped strategy for crystalline polymer donor to improve the photovoltaic performance of non-fullerene solar cells. Science China Chemistry, 2022, 65, 964-972.	4.2	6
15	Singleâ€Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor. Advanced Materials, 2022, 34, e2110147.	11.1	377
16	Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy and Environmental Science, 2022, 15, 2537-2544.	15.6	311
17	A Near-Infrared Polymer Acceptor Enables over 15% Efficiency for All-Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 877-888.	2.0	13
18	Novel Third Components with (Thio)barbituric Acid as the End Groups Improving the Efficiency of Ternary Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 23701-23708.	4.0	13

#	Article	IF	CITATIONS
19	Isomerization of Asymmetric Ladderâ€Type Heteroheptaceneâ€Based Smallâ€Molecule Acceptors Improving Molecular Packing: Efficient Nonfullerene Organic Solar Cells with Excellent Fill Factors. Advanced Functional Materials, 2022, 32, .	7.8	20
20	Simple (thienylmethylene)oxindoleâ€based polymer materials as donors for efficient nonâ€fullerene polymer solar cells. Nano Select, 2021, 2, 417-424.	1.9	0
21	Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.	10.2	93
22	Wide bandgap donor polymers containing carbonyl groups for efficient non-fullerene polymer solar cells. Dyes and Pigments, 2021, 186, 108987.	2.0	2
23	The Intrinsic Role of Molecular Mass and Polydispersity Index in Highâ€Performance Nonâ€Fullerene Polymer Solar Cells. Advanced Energy Materials, 2021, 11, .	10.2	47
24	Fluorinated End Group Enables Highâ€Performance Allâ€Polymer Solar Cells with Nearâ€Infrared Absorption and Enhanced Device Efficiency over 14%. Advanced Energy Materials, 2021, 11, 2003171.	10.2	89
25	Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss. Advanced Energy Materials, 2021, 11, 2003177.	10.2	114
26	Improving Photovoltaic Performance of Nonâ€Fullerene Polymer Solar Cells Enables by Fineâ€Tuning Blend Microstructure via Binary Solvent Mixtures. Advanced Functional Materials, 2021, 31, 2008767.	7.8	31
27	Highly Efficient Ternary Allâ€Polymer Solar Cells with Enhanced Stability. Advanced Functional Materials, 2021, 31, 2008494.	7.8	41
28	Using an N-vinylpyrrolidone co-polymer in reactive dye printing as an alternative to urea. Textile Reseach Journal, 2021, 91, 1786-1794.	1.1	6
29	High-performance all-small-molecule organic solar cells without interlayers. Energy and Environmental Science, 2021, 14, 3174-3183.	15.6	43
30	Highly Efficient and Stable All-Polymer Solar Cells Enabled by Near-Infrared Isomerized Polymer Acceptors. Chemistry of Materials, 2021, 33, 761-773.	3.2	47
31	Photooxidation Analysis of Two Isomeric Nonfullerene Acceptors: A Systematic Study of Conformational, Morphological, and Environmental Factors. Solar Rrl, 2021, 5, 2000704.	3.1	6
32	Highâ€Performance Allâ€Polymer Solar Cells with a Pseudoâ€Bilayer Configuration Enabled by a Stepwise Optimization Strategy. Advanced Functional Materials, 2021, 31, 2010411.	7.8	99
33	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie, 2021, 133, 10225-10234.	1.6	13
34	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie - International Edition, 2021, 60, 10137-10146.	7.2	145
35	Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6, 605-613.	19.8	1,307
36	A Difluoroâ€Monobromo End Group Enables Highâ€Performance Polymer Acceptor and Efficient Allâ€Polymer Solar Cells Processable with Green Solvent under Ambient Condition. Advanced Functional Materials, 2021, 31, 2100791.	7.8	89

#	Article	IF	CITATIONS
37	Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule, 2021, 5, 1209-1230.	11.7	138
38	Multi‧elenophene ontaining Narrow Bandgap Polymer Acceptors for Allâ€Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angewandte Chemie - International Edition, 2021, 60, 15935-15943.	7.2	125
39	Asymmetric Isomer Effects in Benzo[<i>c</i>][1,2,5]thiadiazoleâ€Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement. Advanced Functional Materials, 2021, 31, 2104369.	7.8	46
40	Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548-1565.	11.7	281
41	Remove the water-induced traps toward improved performance in organic solar cells. Science China Materials, 2021, 64, 2629-2644.	3.5	11
42	A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells. Joule, 2021, 5, 1800-1815.	11.7	77
43	Tuning of the Interconnecting Layer for Monolithic Perovskite/Organic Tandem Solar Cells with Record Efficiency Exceeding 21%. Nano Letters, 2021, 21, 7845-7854.	4.5	40
44	PEDOT:PSSâ€Free Polymer Nonâ€Fullerene Polymer Solar Cells with Efficiency up to 18.60% Employing a Binaryâ€Solventâ€Chlorinated ITO Anode. Advanced Functional Materials, 2021, 31, 2106846.	7.8	40
45	Polymerized small-molecule acceptors based on vinylene as π-bridge for efficient all-polymer solar cells. Polymer, 2021, 230, 124104.	1.8	14
46	Transesterification reaction and application in anti-wrinkle finishing of cotton fabrics. Cellulose, 2021, 28, 11183-11197.	2.4	3
47	Baseplate Temperatureâ€Dependent Vertical Composition Gradient in Pseudoâ€Bilayer Films for Printing Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102135.	10.2	33
48	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, 11, .	10.2	66
49	A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule, 2020, 4, 407-419.	11.7	272
50	End group tuning in small molecule donors for non-fullerene organic solar cells. Dyes and Pigments, 2020, 175, 108078.	2.0	14
51	Tailoring non-fullerene acceptors using selenium-incorporated heterocycles for organic solar cells with over 16% efficiency. Journal of Materials Chemistry A, 2020, 8, 23756-23765.	5.2	85
52	Machine learning for accelerating the discovery of high-performance donor/acceptor pairs in non-fullerene organic solar cells. Npj Computational Materials, 2020, 6, .	3.5	77
53	Alkyl chain engineering of non-fullerene small molecule acceptors for solution-processable organic solar cells. Organic Electronics, 2020, 87, 105963.	1.4	14
54	The post-treatment effects on open circuit voltages and device performances in a high efficiency all-small-molecule organic solar cell. Journal of Materials Chemistry C, 2020, 8, 15385-15392.	2.7	18

#	Article	IF	CITATIONS
55	Highly Efficient Allâ€Polymer Solar Cells Enabled by Random Ternary Copolymer Acceptors with High Tolerance on Molar Ratios. Solar Rrl, 2020, 4, 2000409.	3.1	15
56	Excited state dynamics and exciton diffusion in triphenylamine/dicyanovinyl push–pull small molecule for organic optoelectronics. Scientific Reports, 2020, 10, 21198.	1.6	10
57	Controlling Molecular Mass of Low-Band-Gap Polymer Acceptors for High-Performance All-Polymer Solar Cells. Joule, 2020, 4, 1070-1086.	11.7	236
58	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	11.7	344
59	Synthesis of Active Graphene with Para-Ester on Cotton Fabrics for Antistatic Properties. Nanomaterials, 2020, 10, 1147.	1.9	8
60	Efficient Fusedâ€Ring Extension of A–D–Aâ€Type Nonâ€Fullerene Acceptors by a Symmetric Replicating Core Unit Strategy. Chemistry - A European Journal, 2020, 26, 12411-12417.	1.7	13
61	An Effective Method for Recovering Nonradiative Recombination Loss in Scalable Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2000417.	7.8	31
62	Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nature Communications, 2020, 11, 1218.	5.8	197
63	High-performance all-polymer solar cells with only 0.47 eV energy loss. Science China Chemistry, 2020, 63, 1449-1460.	4.2	62
64	Two similar near-infrared (IR) non-fullerene acceptors as near IR sensitizers for ternary solar cells. Organic Electronics, 2020, 85, 105880.	1.4	7
65	Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Science China Chemistry, 2020, 63, 361-369.	4.2	128
66	Dithieno[3,2â€ <i>b</i> :2ʹ,3ʹâ€ <i>d</i>]pyrrolâ€Fused Asymmetrical Electron Acceptors: A Study into the Effects of Nitrogenâ€Functionalization on Reducing Nonradiative Recombination Loss and Dipole Moment on Morphology. Advanced Science, 2020, 7, 1902657.	5.6	51
67	Modification on the Indacenodithieno[3,2- <i>b</i>]thiophene Core to Achieve Higher Current and Reduced Energy Loss for Nonfullerene Solar Cells. Chemistry of Materials, 2020, 32, 1297-1307.	3.2	46
68	Achieving Ecoâ€Compatible Organic Solar Cells with Efficiency >16.5% Based on an Iridium Complexâ€Incorporated Polymer Donor. Solar Rrl, 2020, 4, 2000156.	3.1	43
69	Solutionâ€Processed Polymer Solar Cells with over 17% Efficiency Enabled by an Iridium Complexation Approach. Advanced Energy Materials, 2020, 10, 2000590.	10.2	117
70	High-efficiency all-small-molecule organic solar cells based on an organic molecule donor with an asymmetric thieno[2,3-f] benzofuran unit. Science China Chemistry, 2020, 63, 1246-1255.	4.2	55
71	An Oligothiophene–Fullerene Molecule with a Balanced Donor–Acceptor Backbone for Highâ€Performance Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 14556-14561.	7.2	62
72	An Oligothiophene–Fullerene Molecule with a Balanced Donor–Acceptor Backbone for Highâ€Performance Single omponent Organic Solar Cells. Angewandte Chemie, 2019, 131, 14698-14703.	1.6	6

#	Article	IF	CITATIONS
73	A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: rational control of vertical stratification for high performance. Energy and Environmental Science, 2019, 12, 3118-3132.	15.6	142
74	Finely Tuned Cores in Starâ€Shaped Zwitterionic Molecules for Interface Engineering of Highâ€Performance Polymer Solar Cells. Solar Rrl, 2019, 3, 1900166.	3.1	7
75	Perylene diimide-based cathode interfacial materials: adjustable molecular structures and conformation, optimized film morphology, and much improved performance of non-fullerene polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 1840-1848.	3.2	28
76	Achieving Fast Charge Separation and Low Nonradiative Recombination Loss by Rational Fluorination for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2019, 31, e1905480.	11.1	162
77	Fluorine-Substituted Dithienylbenzodiimide-Based n-Type Polymer Semiconductors for Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 35924-35934.	4.0	24
78	Pyrene-fused PDI based ternary solar cells: high power conversion efficiency over 10%, and improved device thermal stability. Materials Chemistry Frontiers, 2019, 3, 93-102.	3.2	27
79	A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy and Environmental Science, 2019, 12, 384-395.	15.6	193
80	Spontaneous open-circuit voltage gain of fully fabricated organic solar cells caused by elimination of interfacial energy disorder. Energy and Environmental Science, 2019, 12, 2518-2528.	15.6	57
81	Benzotriazole-Based Acceptor and Donors, Coupled with Chlorination, Achieve a High <i>V</i> _{OC} of 1.24 V and an Efficiency of 10.5% in Fullerene-Free Organic Solar Cells. Chemistry of Materials, 2019, 31, 3941-3947.	3.2	236
82	A wide-bandgap D–A copolymer donor based on a chlorine substituted acceptor unit for high performance polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 14070-14078.	5.2	68
83	Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting. Nano Energy, 2019, 61, 559-566.	8.2	65
84	Ternary Organic Solar Cells with Small Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 1196-1203.	8.8	101
85	A diketopyrrolopyrrole-based nonfullerene acceptor for organic solar cells with a high open-circuit voltage of 1.17 V. Polymer Journal, 2019, 51, 895-904.	1.3	4
86	A new small molecule donor for efficient and stable all small molecule organic solar cells. Organic Electronics, 2019, 70, 78-85.	1.4	20
87	Reduced Energy Loss Enabled by a Chlorinated Thiopheneâ€Fused Endingâ€Group Small Molecular Acceptor for Efficient Nonfullerene Organic Solar Cells with 13.6% Efficiency. Advanced Energy Materials, 2019, 9, 1900041.	10.2	144
88	Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors. Advanced Materials, 2019, 31, e1905645.	11.1	240
89	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	5.2	107
90	A Cost Analysis of Fully Solutionâ€Processed ITOâ€Free Organic Solar Modules. Advanced Energy Materials, 2019, 9, 1802521.	10.2	93

#	Article	IF	CITATIONS
91	Overcoming Microstructural Limitations in Water Processed Organic Solar Cells by Engineering Customized Nanoparticulate Inks. Advanced Energy Materials, 2018, 8, 1702857.	10.2	48
92	Effects of bridging atom in donor units and nature of acceptor groups on physical and photovoltaic properties of A-Ï€-D-Ï€-A oligomers. Organic Electronics, 2018, 55, 42-49.	1.4	12
93	All-small molecule solar cells based on donor molecule optimization with highly enhanced efficiency and stability. Journal of Materials Chemistry A, 2018, 6, 15675-15683.	5.2	55
94	Triphenylamine-Based Push–Pull Molecule for Photovoltaic Applications: From Synthesis to Ultrafast Device Photophysics. Journal of Physical Chemistry C, 2017, 121, 6424-6435.	1.5	17
95	Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells via a Novel Figure of Merit. Advanced Energy Materials, 2017, 7, 1700465.	10.2	114
96	Panchromatic ternary/quaternary polymer/fullerene BHJ solar cells based on novel silicon naphthalocyanine and silicon phthalocyanine dye sensitizers. Journal of Materials Chemistry A, 2017, 5, 2550-2562.	5.2	32
97	Processability: Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells via a Novel Figure of Merit (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
98	Understanding the correlation and balance between the miscibility and optoelectronic properties of polymer–fullerene solar cells. Journal of Materials Chemistry A, 2017, 5, 17570-17579.	5.2	35
99	Gaining further insight into the effects of thermal annealing and solvent vapor annealing on time morphological development and degradation in small molecule solar cells. Journal of Materials Chemistry A, 2017, 5, 18101-18110.	5.2	50
100	Overcoming the Thermal Instability of Efficient Polymer Solar Cells by Employing Novel Fullereneâ&Based Acceptors. Advanced Energy Materials, 2017, 7, 1601204.	10.2	69
101	Overcoming the Interface Losses in Planar Heterojunction Perovskiteâ€Based Solar Cells. Advanced Materials, 2016, 28, 5112-5120.	11.1	188
102	Fully Solutionâ€Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers. Advanced Functional Materials, 2016, 26, 4543-4550.	7.8	73
103	A Series of Pyreneâ€5ubstituted Silicon Phthalocyanines as Nearâ€IR Sensitizers in Organic Ternary Solar Cells. Advanced Energy Materials, 2016, 6, 1502355.	10.2	59
104	Effects of electron-withdrawing group and electron-donating core combinations on physical properties and photovoltaic performance in D-Ï€-A star-shaped small molecules. Organic Electronics, 2016, 32, 157-168.	1.4	39
105	High efficiency and stability small molecule solar cells developed by bulk microstructure fine-tuning. Nano Energy, 2016, 28, 241-249.	8.2	57
106	High performance all-small-molecule solar cells: engineering the nanomorphology via processing additives. Journal of Materials Chemistry A, 2016, 4, 14234-14240.	5.2	43
107	Timeâ€Dependent Morphology Evolution of Solutionâ€Processed Small Molecule Solar Cells during Solvent Vapor Annealing. Advanced Energy Materials, 2016, 6, 1502579.	10.2	96
108	Star-shaped D–݀–A oligothiophenes with a tris(2-methoxyphenyl)amine core and alkyldicyanovinyl groups: synthesis and physical and photovoltaic properties. Journal of Materials Chemistry C, 2016, 4, 7061-7076.	2.7	26

#	Article	IF	CITATIONS
109	Allâ€Polymer Solar Cells Based on Absorptionâ€Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Advanced Materials, 2016, 28, 1884-1890.	11.1	670
110	Sideâ€Chain Engineering for Enhancing the Properties of Small Molecule Solar Cells: A Tradeâ€off Beyond Efficiency. Advanced Energy Materials, 2016, 6, 1600515.	10.2	62
111	Highâ€Performance Organic Solar Cells Based on a Small Molecule with Alkylthioâ€Thienylâ€Conjugated Side Chains without Extra Treatments. Advanced Materials, 2015, 27, 7469-7475.	11.1	186
112	Effects of Alkyl Terminal Chains on Morphology, Charge Generation, Transport, and Recombination Mechanisms in Solutionâ€Processed Small Molecule Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2015, 5, 1500386.	10.2	112
113	Printing high performance reflective electrodes for organic solar cells. Organic Electronics, 2015, 17, 334-339.	1.4	23
114	4H-1,2,6-Thiadiazin-4-one-containing small molecule donors and additive effects on their performance in solution-processed organic solar cells. Journal of Materials Chemistry C, 2015, 3, 2358-2365.	2.7	29
115	A Universal Interface Layer Based on an Amineâ€Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401692.	10.2	144
116	Effects of bridging atom and π-bridge length on physical and photovoltaic properties of A–π-D–π-A oligomers for solution-processed organic solar cells. Dyes and Pigments, 2015, 122, 213-223.	2.0	10
117	Synthesis and photovoltaic effect in red/near-infrared absorbing A-D-A-D-A-type oligothiophenes containing benzothiadiazole and thienothiadiazole central units. Journal of Photonics for Energy, 2015, 5, 057213.	0.8	11
118	Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22695-22707.	5.2	26
119	Design of low band gap small molecules with alkyldicyanovinyl acceptor and different donor groups for efficient bulk heterojunction organic solar cells. Proceedings of SPIE, 2015, , .	0.8	7
120	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance. Chemistry of Materials, 2015, 27, 227-234.	3.2	233
121	Synthesis and characterization of photoreactive silica nanoparticles for super-hydrophobic cotton fabrics application. Textile Reseach Journal, 2015, 85, 795-803.	1.1	17
122	A new dithienosilole-based oligothiophene with methyldicyanovinyl groups for high performance solution-processed organic solar cells. Organic Electronics, 2014, 15, 3800-3804.	1.4	18
123	Solubility Based Identification of Green Solvents for Small Molecule Organic Solar Cells. Advanced Functional Materials, 2014, 24, 1449-1457.	7.8	132
124	Alkyl Chain Engineering of Solutionâ€Processable Starâ€Shaped Molecules for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1301234.	10.2	96
125	A star-shaped D–ï€â€"A small molecule based on a tris(2-methoxyphenyl)amine core for highly efficient solution-processed organic solar cells. Journal of Materials Chemistry C, 2014, 2, 7614-7620.	2.7	16
126	Interface Design to Improve the Performance and Stability of Solutionâ€Processed Smallâ€Molecule Conventional Solar Cells. Advanced Energy Materials, 2014, 4, 1400816.	10.2	76

#	Article	IF	CITATIONS
127	Effects of oligothiophene π-bridge length on physical and photovoltaic properties of star-shaped molecules for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 16135-16147.	5.2	38
128	A combination of Al-doped ZnO and a conjugated polyelectrolyte interlayer for small molecule solution-processed solar cells with an inverted structure. Journal of Materials Chemistry A, 2013, 1, 11306.	5.2	48
129	Synthesis and photovoltaic properties of a D–A copolymer of dithienosilole and fluorinated-benzotriazole. Polymer Chemistry, 2013, 4, 1467-1473.	1.9	35
130	A solution-processable star-shaped molecule for high-performance organic solar cells via alkyl chain engineering and solvent additive. Organic Electronics, 2013, 14, 219-229.	1.4	57
131	IR sensitization of an indene-C60 bisadduct (ICBA) in ternary organic solar cells. Energy and Environmental Science, 2013, 6, 1796.	15.6	101
132	Design of the Solutionâ€Processed Intermediate Layer by Engineering for Inverted Organic Multi junction Solar Cells. Advanced Energy Materials, 2013, 3, 301-307.	10.2	57
133	Two Similar Near-Infrared (IR) Absorbing Benzannulated Aza-BODIPY Dyes as Near-IR Sensitizers for Ternary Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 5609-5616.	4.0	70
134	Organic Ternary Solar Cells: A Review. Advanced Materials, 2013, 25, 4245-4266.	11.1	688
135	A new two-dimensional oligothiophene end-capped with alkyl cyanoacetate groups for highly efficient solution-processed organic solar cells. Chemical Communications, 2013, 49, 4409.	2.2	66
136	Side Chain Engineering of Polythiophene Derivatives with a Thienylene–Vinylene Conjugated Side Chain for Application in Polymer Solar Cells. Macromolecules, 2012, 45, 2312-2320.	2.2	50
137	Conjugated Side-Chain Isolated Polythiophene: Synthesis and Photovoltaic Application. Macromolecules, 2012, 45, 113-118.	2.2	53
138	Conjugated Side-Chain-Isolated D–A Copolymers Based on Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene- <i>alt</i> -dithienylbenzotriazole: Synthesis and Photovoltaic Properties. Chemistry of Materials, 2012, 24, 3247-3254.	3.2	273
139	Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Smallâ€Bandgap Polymer. Advanced Energy Materials, 2012, 2, 1198-1202.	10.2	199
140	Synthesis and photovoltaic properties of alternative copolymers of benzo[1,2-b:4,5-b′]dithiophene and thiophene. Polymer Bulletin, 2012, 68, 2107-2119.	1.7	2
141	Effect of microwave curing on antimicrobial activity of chitosan biguanidine hydrochloride treated wool fabrics. Journal of the Textile Institute, 2011, 102, 801-807.	1.0	27
142	Synthesis and photovoltaic properties of copolymers of carbazole and thiophene with conjugated side chain containing acceptor end groups. Polymer Chemistry, 2011, 2, 1678.	1.9	37
143	Synthesis and Photovoltaic Properties of D–A Copolymers Based on Dithienosilole and Benzotriazole. Macromolecules, 2011, 44, 7632-7638.	2.2	93
144	Alkyl chain engineering on a dithieno[3,2-b:2′,3′-d]silole-alt-dithienylthiazolo[5,4-d]thiazole copolymer toward high performance bulk heterojunction solar cells. Chemical Communications, 2011, 47, 9474.	2.2	94

#	Article	IF	CITATIONS
145	A D–A copolymer of dithienosilole and a new acceptor unit of naphtho[2,3-c]thiophene-4,9-dione for efficient polymer solar cells. Chemical Communications, 2011, 47, 11345.	2.2	68
146	Effect of acceptor substituents on photophysical and photovoltaic properties of triphenylamine–carbazole alternating copolymers. Synthetic Metals, 2011, 161, 1383-1389.	2.1	14
147	Low bandgap copolymer of 1,4-diketopyrrolo[3,4-c]pyrrole and thieno[3,2-b]thiophene: Synthesis and applications in polymer solar cells and field-effect transistors. Synthetic Metals, 2011, 161, 1832-1837.	2.1	12
148	Effect of Carbon Chain Length in the Substituent of PCBMâ€like Molecules on Their Photovoltaic Properties. Advanced Functional Materials, 2010, 20, 1480-1487.	7.8	137
149	Poly(4,8â€bis(2â€ethylhexyloxy)benzo[1,2â€b:4,5â€b′]dithiophene vinylene): Synthesis, optical and photovol properties. Journal of Polymer Science Part A, 2010, 48, 1822-1829.	taic 2.5	31
150	Synthesis and characterization of low bandgap poly(dithienosilole vinylene) derivatives. Synthetic Metals, 2010, 160, 1045-1049.	2.1	4
151	Synthesis and Photovoltaic Properties of Bithiazole-Based Donorâ^Acceptor Copolymers. Macromolecules, 2010, 43, 5706-5712.	2.2	103
152	Synthesis and Photovoltaic Properties of a Copolymer of Benzo[1,2-b:4,5-b′]dithiophene and Bithiazole. Macromolecules, 2010, 43, 8714-8717.	2.2	56
153	Poly(thienylene-benzothiadiazole-thienylene-vinylene): A narrow bandgap polymer with broad absorption from visible to infrared region. Polymer, 2009, 50, 5055-5058.	1.8	21
154	Influence of Sulfur Oxidation on the Absorption and Electronic Energy Levels of Poly(thienothiophene) Derivatives. Journal of Physical Chemistry B, 2009, 113, 14981-14985.	1.2	2
155	Carbon nanotube yarns derived from gamma irradiated carbon nanotube forests. Journal of Industrial Textiles, 0, , 152808372211010.	1.1	0