Theodore D Satterthwaite

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/992030/theodore-d-satterthwaite-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

244 14,209 61 115 g-index

323 20,203 7 6.44 L-index

#	Paper	IF	Citations
244	A developmental reduction of the excitation:inhibition ratio in association cortex during adolescence <i>Science Advances</i> , 2022 , 8, eabj8750	14.3	1
243	Network controllability mediates the relationship between rigid structure and flexible dynamics. <i>Network Neuroscience</i> , 2022 , 6, 275-297	5.6	O
242	Associations between neighborhood socioeconomic status, parental education, and executive system activation in youth <i>Cerebral Cortex</i> , 2022 ,	5.1	1
241	Developmental coupling of cerebral blood flow and fMRI fluctuations in youth <i>Cell Reports</i> , 2022 , 38, 110576	10.6	O
240	Harmonizing Functional Connectivity Reduces Scanner Effects in Community Detection NeuroImage, 2022, 119198	7.9	O
239	Schizophrenia Imaging Signatures and Their Associations With Cognition, Psychopathology, and Genetics in the General Population <i>American Journal of Psychiatry</i> , 2022 , appiajp21070686	11.9	1
238	Dissociable multi-scale patterns of development in personalized brain networks <i>Nature Communications</i> , 2022 , 13, 2647	17.4	1
237	Reliability and validity of bifactor models of dimensional psychopathology in youth. 2022 , 131, 407-421		1
236	Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group. <i>Molecular Psychiatry</i> , 2021 , 26, 5124-5139	15.1	48
235	Multi-scale semi-supervised clustering of brain images: Deriving disease subtypes. <i>Medical Image Analysis</i> , 2021 , 75, 102304	15.4	1
234	Relationship of ventral striatum activation during effort discounting to clinical amotivation severity in schizophrenia. <i>NPJ Schizophrenia</i> , 2021 , 7, 48	5.5	O
233	Neuroimaging Association Scores: reliability and validity of aggregate measures of brain structural features linked to mental disorders in youth. <i>European Child and Adolescent Psychiatry</i> , 2021 , 30, 1895-1	1 9 05	O
232	Hierarchical Extraction of Functional Connectivity Components in Human Brain Using Resting-State fMRI. <i>IEEE Transactions on Medical Imaging</i> , 2021 , 40, 940-950	11.7	3
231	Transdiagnostic dimensions of psychopathology explain individuals Runique deviations from normative neurodevelopment in brain structure. <i>Translational Psychiatry</i> , 2021 , 11, 232	8.6	9
230	Morphological integration of the human brain across adolescence and adulthood. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7
229	Network Controllability in Transmodal Cortex Predicts Psychosis Spectrum Symptoms. <i>Biological Psychiatry</i> , 2021 , 89, S370-S371	7.9	4
228	Pitfalls in brain age analyses. <i>Human Brain Mapping</i> , 2021 , 42, 4092-4101	5.9	11

(2021-2021)

227	QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. <i>Nature Methods</i> , 2021 , 18, 775-778	21.6	26	
226	FlywheelTools: Data Curation and Manipulation on the Flywheel Platform. <i>Frontiers in Neuroinformatics</i> , 2021 , 15, 678403	3.9	1	
225	Regional White Matter Scaling in the Human Brain. Journal of Neuroscience, 2021, 41, 7015-7028	6.6	0	
224	A local group differences test for subject-level multivariate density neuroimaging outcomes. <i>Biostatistics</i> , 2021 , 22, 646-661	3.7		
223	Neurocognitive and functional heterogeneity in depressed youth. <i>Neuropsychopharmacology</i> , 2021 , 46, 783-790	8.7	3	
222	Structural and Functional Brain Parameters Related to Cognitive Performance Across Development: Replication and Extension of the Parieto-Frontal Integration Theory in a Single Sample. <i>Cerebral Cortex</i> , 2021 , 31, 1444-1463	5.1	9	
221	Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders. <i>JAMA Psychiatry</i> , 2021 , 78, 47-63	14.5	43	
220	Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. <i>Wiley Interdisciplinary Reviews: Cognitive Science</i> , 2021 , 12, e1553	4.5	2	
219	Brain Responses to Noxious Stimuli in Patients With Chronic Pain: A Systematic Review and Meta-analysis. <i>JAMA Network Open</i> , 2021 , 4, e2032236	10.4	3	
218	Diminished reward responsiveness is associated with lower reward network GluCEST: an ultra-high field glutamate imaging study. <i>Molecular Psychiatry</i> , 2021 , 26, 2137-2147	15.1	3	
217	Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years. <i>Human Brain Mapping</i> , 2021 ,	5.9	26	
216	Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years. <i>Human Brain Mapping</i> , 2021 ,	5.9	13	
215	Crystallinity characterization of white matter in the human brain. New Journal of Physics, 2021, 23, 0730	047 9	3	
214	Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. <i>Neuron</i> , 2021 , 109, 2820-2846	13.9	34	
213	Network Controllability in Transmodal Cortex Predicts Positive Psychosis Spectrum Symptoms. <i>Biological Psychiatry</i> , 2021 , 90, 409-418	7.9	7	
212	A simple permutation-based test of intermodal correspondence. <i>Human Brain Mapping</i> , 2021 , 42, 5175-	-5 <u>4</u> .87	3	
211	Developmental Cognitive Neuroscience in the Era of Networks and Big Data: Strengths, Weaknesses, Opportunities, and Threats. <i>Annual Review of Developmental Psychology</i> , 2021 , 3,	7.5	3	
210	A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. <i>Human Brain Mappina</i> , 2021 .	5.9	7	

209	Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group. <i>Translational Psychiatry</i> , 2021 , 11, 502	8.6	4
208	Towards precise resting-state fMRI biomarkers in psychiatry: synthesizing developments in transdiagnostic research, dimensional models of psychopathology, and normative neurodevelopment. <i>Current Opinion in Neurobiology</i> , 2020 , 65, 120-128	7.6	19
207	Engaging endogenous opioid circuits in pain affective processes. <i>Journal of Neuroscience Research</i> , 2020 ,	4.4	4
206	Control of brain network dynamics across diverse scales of space and time. <i>Physical Review E</i> , 2020 , 101, 062301	2.4	7
205	Sex Differences in Variability of Brain Structure Across the Lifespan. <i>Cerebral Cortex</i> , 2020 , 30, 5420-543	3 9 .1	10
204	Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. <i>NeuroImage</i> , 2020 , 218, 116956	7.9	32
203	Parsing Psychiatric Heterogeneity Through Common and Unique Circuit-Level Deficits. <i>Biological Psychiatry</i> , 2020 , 88, 4-5	7.9	4
202	The Relationship Between White Matter Microstructure and General Cognitive Ability in Patients With Schizophrenia and Healthy Participants in the ENIGMA Consortium. <i>American Journal of Psychiatry</i> , 2020 , 177, 537-547	11.9	21
201	Multi-scale network regression for brain-phenotype associations. <i>Human Brain Mapping</i> , 2020 , 41, 2553	-25566	10
2 00	Imaging local genetic influences on cortical folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 7430-7436	11.5	13
199	Structural brain networks in remitted psychotic depression. <i>Neuropsychopharmacology</i> , 2020 , 45, 1223-	18. 3 ·1	2
198	MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. <i>Brain</i> , 2020 , 143, 2312-2324	11.2	58
197	Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group. <i>Human Brain Mapping</i> , 2020 ,	5.9	19
196	Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning. <i>Brain</i> , 2020 , 143, 1027-1038	11.2	53
195	Individual Variation in Functional Topography of Association Networks in Youth. <i>Neuron</i> , 2020 , 106, 340)- 3 53.e	 1861
194	Multiple Facets of Value-Based Decision Making in Major Depressive Disorder. <i>Scientific Reports</i> , 2020 , 10, 3415	4.9	12
193	Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A large-scale fMRI meta-analysis. <i>Neuroscience and Biobehavioral Reviews</i> , 2020 , 112, 300-323	9	28
192	Longitudinal Development of Brain Iron Is Linked to Cognition in Youth. <i>Journal of Neuroscience</i> , 2020 , 40, 1810-1818	6.6	20

(2020-2020)

191	Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. <i>NeuroImage</i> , 2020 , 216, 116745	7.9	50	
190	Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood. <i>Developmental Cognitive Neuroscience</i> , 2020 , 43, 100788	5.5	27	
189	Optimization of energy state transition trajectory supports the development of executive function during youth. <i>ELife</i> , 2020 , 9,	8.9	19	
188	The architecture of co-morbidity networks of physical and mental health conditions in military veterans. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2020 , 476, 20190790	2.4	1	
187	Impact of childhood adversity on network reconfiguration dynamics during working memory in hypogonadal women. <i>Psychoneuroendocrinology</i> , 2020 , 119, 104710	5	2	
186	Reward and punishment reversal-learning in major depressive disorder. <i>Journal of Abnormal Psychology</i> , 2020 , 129, 810-823	7	8	
185	Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. <i>Communications Biology</i> , 2020 , 3, 261	6.7	36	
184	Neurostructural Heterogeneity in Youths With Internalizing Symptoms. <i>Biological Psychiatry</i> , 2020 , 87, 473-482	7.9	12	
183	A Multidimensional Neural Maturation Index Reveals Reproducible Developmental Patterns in Children and Adolescents. <i>Journal of Neuroscience</i> , 2020 , 40, 1265-1275	6.6	17	
182	Approaches to Defining Common and Dissociable Neurobiological Deficits Associated With Psychopathology in Youth. <i>Biological Psychiatry</i> , 2020 , 88, 51-62	7.9	10	
181	Development of structure-function coupling in human brain networks during youth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 771-778	11.5	97	
180	Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. <i>NeuroImage</i> , 2020 , 208, 116450	7.9	79	
179	Intensity warping for multisite MRI harmonization. <i>NeuroImage</i> , 2020 , 223, 117242	7.9	13	
178	Precision biomarkers for mood disorders based on brain imaging. <i>BMJ, The</i> , 2020 , 371, m3618	5.9	3	
177	Greater male than female variability in regional brain structure across the lifespan. <i>Human Brain Mapping</i> , 2020 ,	5.9	31	
176	ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. <i>Human Brain Mapping</i> , 2020 ,	5.9	14	
175	Direct and Indirect Associations of Widespread Individual Differences in Brain White Matter Microstructure With Executive Functioning and General and Specific Dimensions of Psychopathology in Children. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2020 ,	3.4	1	
174	What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. <i>Human Brain Mapping</i> , 2020 ,	5.9	21	

173	Structural Brain Patterns Associated with Traumatic Stress Resilience and Susceptibility to Mood and Anxiety Symptoms in Youths. <i>Adversity and Resilience Science</i> , 2020 , 1, 179-190	4.3	О
172	Discovering Synchronized Subsets of Sequences: A Large Scale Solution. <i>Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition</i> , 2020 , 2020, 9490-9499	6	О
171	Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. <i>Molecular Psychiatry</i> , 2020 , 25, 2130-21	4 ¹ 3 ^{5.1}	71
170	Alterations in white matter microstructure in individuals at persistent risk for psychosis. <i>Molecular Psychiatry</i> , 2020 , 25, 2441-2454	15.1	5
169	Associations between Neighborhood SES and Functional Brain Network Development. <i>Cerebral Cortex</i> , 2020 , 30, 1-19	5.1	34
168	Unifying the Notions of Modularity and Core-Periphery Structure in Functional Brain Networks during Youth. <i>Cerebral Cortex</i> , 2020 , 30, 1087-1102	5.1	3
167	Accelerated cortical thinning within structural brain networks is associated with irritability in youth. <i>Neuropsychopharmacology</i> , 2019 , 44, 2254-2262	8.7	12
166	System-level matching of structural and functional connectomes in the human brain. <i>NeuroImage</i> , 2019 , 199, 93-104	7.9	23
165	Evidence for Dissociable Linkage of Dimensions of Psychopathology to Brain Structure in Youths. American Journal of Psychiatry, 2019 , 176, 1000-1009	11.9	27
164	Burden of Environmental Adversity Associated With Psychopathology, Maturation, and Brain Behavior Parameters in Youths. <i>JAMA Psychiatry</i> , 2019 , 76, 966-975	14.5	72
163	Development of a computerized adaptive screening tool for overall psychopathology ("p"). <i>Journal of Psychiatric Research</i> , 2019 , 116, 26-33	5.2	17
162	Cannabis use in youth is associated with limited alterations in brain structure. Neuropsychopharmacology, 2019 , 44, 1362-1369	8.7	21
161	MIMoSA: An Approach to Automatically Segment T2 Hyperintense and T1 Hypointense Lesions in Multiple Sclerosis. <i>Lecture Notes in Computer Science</i> , 2019 , 47-56	0.9	1
160	Sex differences in the developing brain: insights from multimodal neuroimaging. <i>Neuropsychopharmacology</i> , 2019 , 44, 71-85	8.7	102
159	Robust spatial extent inference with a semiparametric bootstrap joint inference procedure. <i>Biometrics</i> , 2019 , 75, 1145-1155	1.8	5
158	Digital phenotyping for psychiatry: Accommodating data and theory with network science methodologies. <i>Current Opinion in Biomedical Engineering</i> , 2019 , 9, 8-13	4.4	21
157	Functional Connectivity of Frontoparietal and Salience/Ventral Attention Networks Have Independent Associations With Co-occurring Attention-Deficit/Hyperactivity Disorder Symptoms in Children With Autism. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2019 , 4, 343-351	3.4	13
156	Sex differences in network controllability as a predictor of executive function in youth. <i>NeuroImage</i> , 2019 , 188, 122-134	7.9	30

(2018-2019)

		26
Motion artifact in studies of functional connectivity: Characteristics and mitigation strategies. <i>Human Brain Mapping</i> , 2019 , 40, 2033-2051	5.9	69
Sex differences in estimated brain metabolism in relation to body growth through adolescence. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 524-535	7.3	14
Association between traumatic stress load, psychopathology, and cognition in the Philadelphia Neurodevelopmental Cohort. <i>Psychological Medicine</i> , 2019 , 49, 325-334	6.9	42
Gestational Age is Dimensionally Associated with Structural Brain Network Abnormalities Across Development. <i>Cerebral Cortex</i> , 2019 , 29, 2102-2114	5.1	12
The impact of in-scanner head motion on structural connectivity derived from diffusion MRI. <i>Neurolmage</i> , 2018 , 173, 275-286	7.9	57
Personalized Neuroscience: Common and Individual-Specific Features in Functional Brain Networks. <i>Neuron</i> , 2018 , 98, 243-245	13.9	33
Understanding the Emergence of Neuropsychiatric Disorders With Network Neuroscience. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 742-753	3.4	39
Diminished Cortical Thickness Is Associated with Impulsive Choice in Adolescence. <i>Journal of Neuroscience</i> , 2018 , 38, 2471-2481	6.6	26
Brain state flexibility accompanies motor-skill acquisition. <i>NeuroImage</i> , 2018 , 171, 135-147	7.9	20
Cognitive Behavioral Therapy Is Associated With Enhanced Cognitive Control Network Activity in Major Depression and Posttraumatic Stress Disorder. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 311-319	3.4	23
Major Depression and Posttraumatic Stress Disorder. Biological Psychiatry: Cognitive Neuroscience	3·4 7·9	23 129
Major Depression and Posttraumatic Stress Disorder. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 311-319		
Major Depression and Posttraumatic Stress Disorder. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 311-319 Quantitative assessment of structural image quality. <i>NeuroImage</i> , 2018 , 169, 407-418 Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals. <i>Schizophrenia</i>	7.9	129
Major Depression and Posttraumatic Stress Disorder. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 311-319 Quantitative assessment of structural image quality. <i>NeuroImage</i> , 2018 , 169, 407-418 Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals. <i>Schizophrenia Bulletin</i> , 2018 , 44, 1035-1044 MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain	7.9	129 77
Major Depression and Posttraumatic Stress Disorder. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 311-319 Quantitative assessment of structural image quality. <i>NeuroImage</i> , 2018 , 169, 407-418 Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals. <i>Schizophrenia Bulletin</i> , 2018 , 44, 1035-1044 MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions. <i>Journal of Neuroimaging</i> , 2018 , 28, 389-398 Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA	7·9 1.3 2.8	129 77 24
Major Depression and Posttraumatic Stress Disorder. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 311-319 Quantitative assessment of structural image quality. <i>NeuroImage</i> , 2018 , 169, 407-418 Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals. <i>Schizophrenia Bulletin</i> , 2018 , 44, 1035-1044 MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions. <i>Journal of Neuroimaging</i> , 2018 , 28, 389-398 Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. <i>Molecular Psychiatry</i> , 2018 , 23, 932-942 Prefrontal cortical thinning links to negative symptoms in schizophrenia via the ENIGMA	7.9 1.3 2.8	129 77 24 340
	Association between traumatic stress load, psychopathology, and cognition in the Philadelphia Neurodevelopmental Cohort. <i>Psychological Medicine</i> , 2019 , 49, 325-334 Gestational Age is Dimensionally Associated with Structural Brain Network Abnormalities Across Development. <i>Cerebral Cortex</i> , 2019 , 29, 2102-2114 The impact of in-scanner head motion on structural connectivity derived from diffusion MRI. <i>NeuroImage</i> , 2018 , 173, 275-286 Personalized Neuroscience: Common and Individual-Specific Features in Functional Brain Networks. <i>Neuron</i> , 2018 , 98, 243-245 Understanding the Emergence of Neuropsychiatric Disorders With Network Neuroscience. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 742-753 Diminished Cortical Thickness Is Associated with Impulsive Choice in Adolescence. <i>Journal of Neuroscience</i> , 2018 , 38, 2471-2481	Association between traumatic stress load, psychopathology, and cognition in the Philadelphia Neurodevelopmental Cohort. Psychological Medicine, 2019, 49, 325-334 Gestational Age is Dimensionally Associated with Structural Brain Network Abnormalities Across Development. Cerebral Cortex, 2019, 29, 2102-2114 The impact of in-scanner head motion on structural connectivity derived from diffusion MRI. Neurolmage, 2018, 173, 275-286 Personalized Neuroscience: Common and Individual-Specific Features in Functional Brain Networks. Neuron, 2018, 98, 243-245 Understanding the Emergence of Neuropsychiatric Disorders With Network Neuroscience. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 742-753 3-4 Diminished Cortical Thickness Is Associated with Impulsive Choice in Adolescence. Journal of Neuroscience, 2018, 38, 2471-2481 6.6

137	Network changes associated with transdiagnostic depressive symptom improvement following cognitive behavioral therapy in MDD and PTSD. <i>Molecular Psychiatry</i> , 2018 , 23, 2314-2323	15.1	20
136	BRAIN AGE PREDICTION BASED ON RESTING-STATE FUNCTIONAL CONNECTIVITY PATTERNS USING CONVOLUTIONAL NEURAL NETWORKS 2018 , 2018, 101-104	1.5	31
135	Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. <i>Neurobiology of Aging</i> , 2018 , 71, 41-50	5.6	38
134	Brain state expression and transitions are related to complex executive cognition in normative neurodevelopment. <i>NeuroImage</i> , 2018 , 166, 293-306	7.9	28
133	Mitigating head motion artifact in functional connectivity MRI. <i>Nature Protocols</i> , 2018 , 13, 2801-2826	18.8	84
132	A dual modeling approach to automatic segmentation of cerebral T2 hyperintensities and T1 black holes in multiple sclerosis. <i>NeuroImage: Clinical</i> , 2018 , 20, 1211-1221	5.3	2
131	The regulation of positive and negative emotions through instructed causal attributions in lifetime depression - A functional magnetic resonance imaging study. <i>NeuroImage: Clinical</i> , 2018 , 20, 1233-1245	5.3	18
130	Faster family-wise error control for neuroimaging with a parametric bootstrap. <i>Biostatistics</i> , 2018 , 19, 497-513	3.7	6
129	Normative brain size variation and brain shape diversity in humans. <i>Science</i> , 2018 , 360, 1222-1227	33.3	117
128	On testing for spatial correspondence between maps of human brain structure and function. <i>Neurolmage</i> , 2018 , 178, 540-551	7.9	162
127	Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. <i>Biological Psychiatry</i> , 2018 , 84, 644-654	7.9	325
126	Sex-Specific Association Between High Traumatic Stress Exposure and Social Cognitive Functioning in Youths. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 860-867	3.4	4
125	Classification of multi-site MR images in the presence of heterogeneity using multi-task learning. <i>NeuroImage: Clinical</i> , 2018 , 19, 476-486	5.3	20
124	Association of Prenatal Exposure to Population-Wide Folic Acid Fortification With Altered Cerebral Cortex Maturation in Youths. <i>JAMA Psychiatry</i> , 2018 , 75, 918-928	14.5	20
123	Evolution of brain network dynamics in neurodevelopment. <i>Network Neuroscience</i> , 2017 , 1, 14-30	5.6	66
122	The modular organization of human anatomical brain networks: Accounting for the cost of wiring. <i>Network Neuroscience</i> , 2017 , 1, 42-68	5.6	91
121	Common Dimensional Reward Deficits Across Mood and Psychotic Disorders: A Connectome-Wide Association Study. <i>American Journal of Psychiatry</i> , 2017 , 174, 657-666	11.9	92
120	Persistence of psychosis spectrum symptoms in the Philadelphia Neurodevelopmental Cohort: a prospective two-year follow-up. <i>World Psychiatry</i> , 2017 , 16, 62-76	14.4	59

119	Cognitive behavioral therapy increases amygdala connectivity with the cognitive control network in both MDD and PTSD. <i>NeuroImage: Clinical</i> , 2017 , 14, 464-470	5.3	54
118	Age-Related Effects and Sex Differences in Gray Matter Density, Volume, Mass, and Cortical Thickness from Childhood to Young Adulthood. <i>Journal of Neuroscience</i> , 2017 , 37, 5065-5073	6.6	152
117	Functional hypergraph uncovers novel covariant structures over neurodevelopment. <i>Human Brain Mapping</i> , 2017 , 38, 3823-3835	5.9	23
116	Modular Segregation of Structural Brain Networks Supports the Development of Executive Function in Youth. <i>Current Biology</i> , 2017 , 27, 1561-1572.e8	6.3	178
115	Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA Schizophrenia consortium. <i>Acta Psychiatrica Scandinavica</i> , 2017 , 135, 439-447	6.5	47
114	Impact of Tryptophan Depletion on Executive System Function during Menopause is Moderated by Childhood Adversity. <i>Neuropsychopharmacology</i> , 2017 , 42, 2398-2406	8.7	14
113	Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 3527-3532	11.5	59
112	Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. <i>NeuroImage</i> , 2017 , 154, 174-187	7.9	501
111	Steeper discounting of delayed rewards in schizophrenia but not first-degree relatives. <i>Psychiatry Research</i> , 2017 , 252, 303-309	9.9	21
110	sGraSP: A graph-based method for the derivation of subject-specific functional parcellations of the brain. <i>Journal of Neuroscience Methods</i> , 2017 , 277, 1-20	3	5
109	Developmental increases in white matter network controllability support a growing diversity of brain dynamics. <i>Nature Communications</i> , 2017 , 8, 1252	17.4	90
108	Globally weaker and topologically different: resting-state connectivity in youth with autism. <i>Molecular Autism</i> , 2017 , 8, 39	6.5	25
107	Temporal Lobe Volume Decrements in Psychosis Spectrum Youths. Schizophrenia Bulletin, 2017, 43, 601	-630	16
106	White matter microstructural deficits in 22q11.2 deletion syndrome. <i>Psychiatry Research - Neuroimaging</i> , 2017 , 268, 35-44	2.9	14
105	Harmonization of multi-site diffusion tensor imaging data. <i>NeuroImage</i> , 2017 , 161, 149-170	7.9	307
104	An Evaluation of the Specificity of Executive Function Impairment in Developmental Psychopathology. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2017 , 56, 975-982	2.7e3	32
103	Impact of early life adversity and tryptophan depletion on functional connectivity in menopausal women: A double-blind, placebo-controlled crossover study. <i>Psychoneuroendocrinology</i> , 2017 , 84, 197-2	o5	8
102	Positive affect, surprise, and fatigue are correlates of network flexibility. <i>Scientific Reports</i> , 2017 , 7, 520	4.9	84

101	Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context. <i>Developmental Cognitive Neuroscience</i> , 2017 , 27, 19-34	5.5	147
100	Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging. <i>Lecture Notes in Computer Science</i> , 2017 , 10541, 371-378	0.9	4
99	Large-scale sparse functional networks from resting state fMRI. <i>NeuroImage</i> , 2017 , 156, 1-13	7.9	27
98	Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. <i>Molecular Psychiatry</i> , 2016 , 21, 547-53	15.1	525
97	The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth. <i>NeuroImage</i> , 2016 , 124, 1115-1119	7.9	173
96	Disrupted anatomic networks in the 22q11.2 deletion syndrome. <i>NeuroImage: Clinical</i> , 2016 , 12, 420-8	5.3	3
95	Elevated Amygdala Perfusion Mediates Developmental Sex Differences in Trait Anxiety. <i>Biological Psychiatry</i> , 2016 , 80, 775-785	7.9	67
94	Divergent relationship of depression severity to social reward responses among patients with bipolar versus unipolar depression. <i>Psychiatry Research - Neuroimaging</i> , 2016 , 254, 18-25	2.9	35
93	Common and Dissociable Mechanisms of Executive System Dysfunction Across Psychiatric Disorders in Youth. <i>American Journal of Psychiatry</i> , 2016 , 173, 517-26	11.9	125
92	Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms. <i>JAMA Psychiatry</i> , 2016 , 73, 515-24	14.5	79
91	Diminished effort on a progressive ratio task in both unipolar and bipolar depression. <i>Journal of Affective Disorders</i> , 2016 , 196, 97-100	6.6	67
90	Subcortical volumetric abnormalities in bipolar disorder. <i>Molecular Psychiatry</i> , 2016 , 21, 1710-1716	15.1	283
89	Establishing a link between sex-related differences in the structural connectome and behaviour. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2016 , 371, 20150111	5.8	96
88	MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. <i>NeuroImage</i> , 2016 , 127, 186-195	7.9	113
87	Dimensional depression severity in women with major depression and post-traumatic stress disorder correlates with fronto-amygdalar hypoconnectivty. <i>Molecular Psychiatry</i> , 2016 , 21, 894-902	15.1	55
86	The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort. <i>NeuroImage</i> , 2016 , 125, 903-919	7.9	128
85	Development of an itemwise efficiency scoring method: Concurrent, convergent, discriminant, and neuroimaging-based predictive validity assessed in a large community sample. <i>Psychological Assessment</i> , 2016 , 28, 1529-1542	5.3	6
84	Subject-level measurement of local cortical coupling. <i>NeuroImage</i> , 2016 , 133, 88-97	7.9	12

(2015-2016)

83	Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine. <i>NeuroImage</i> , 2016 , 132, 157-166	7.9	14
82	Neural Markers of the Development of Executive Function: Relevance for Education. <i>Current Opinion in Behavioral Sciences</i> , 2016 , 10, 7-13	4	15
81	Common and Dissociable Dysfunction of the Reward System in Bipolar and Unipolar Depression. <i>Neuropsychopharmacology</i> , 2015 , 40, 2258-68	8.7	149
8o	Functional neuroimaging abnormalities in youth with psychosis spectrum symptoms. <i>JAMA Psychiatry</i> , 2015 , 72, 456-65	14.5	66
79	Towards an Individualized Delineation of Functional Neuroanatomy. <i>Neuron</i> , 2015 , 87, 471-3	13.9	20
78	Connectome-wide network analysis of youth with Psychosis-Spectrum symptoms. <i>Molecular Psychiatry</i> , 2015 , 20, 1508-15	15.1	78
77	Aberrant Cortical Morphometry in the 22q11.2 Deletion Syndrome. <i>Biological Psychiatry</i> , 2015 , 78, 135-	43 .9	53
76	Emergence of system roles in normative neurodevelopment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13681-6	11.5	197
75	Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI. <i>NeuroImage</i> , 2015 , 105, 286-99	7.9	65
74	Imaging patterns of brain development and their relationship to cognition. <i>Cerebral Cortex</i> , 2015 , 25, 1676-84	5.1	133
73	Linked Sex Differences in Cognition and Functional Connectivity in Youth. <i>Cerebral Cortex</i> , 2015 , 25, 23	8 3 :94	209
72	Heritability of subcortical and limbic brain volume and shape in multiplex-multigenerational families with schizophrenia. <i>Biological Psychiatry</i> , 2015 , 77, 137-46	7.9	29
71	How can studies of resting-state functional connectivity help us understand psychosis as a disorder of brain development?. <i>Current Opinion in Neurobiology</i> , 2015 , 30, 85-91	7.6	49
70	Default mode network segregation and social deficits in autism spectrum disorder: Evidence from non-medicated children. <i>NeuroImage: Clinical</i> , 2015 , 9, 223-32	5.3	90
69	Temporal stability of network centrality in control and default mode networks: Specific associations with externalizing psychopathology in children and adolescents. <i>Human Brain Mapping</i> , 2015 , 36, 4926-37	5.9	19
68	The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2015, 56, 1356-1369	7.9	136
67	GraSP: geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex. <i>NeuroImage</i> , 2015 , 106, 207-21	7.9	45
66	Topologically dissociable patterns of development of the human cerebral cortex. <i>Journal of Neuroscience</i> , 2015 , 35, 599-609	6.6	80

65	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. <i>Brain Imaging and Behavior</i> , 2014 , 8, 153-82	4.1	539
64	Sex differences in the structural connectome of the human brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 823-8	11.5	692
63	Neuroimaging of the Philadelphia neurodevelopmental cohort. <i>NeuroImage</i> , 2014 , 86, 544-53	7.9	307
62	Impact of puberty on the evolution of cerebral perfusion during adolescence. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 8643-8	11.5	122
61	Within-individual variability in neurocognitive performance: age- and sex-related differences in children and youths from ages 8 to 21. <i>Neuropsychology</i> , 2014 , 28, 506-18	3.8	64
60	Unraveling the miswired connectome: a developmental perspective. <i>Neuron</i> , 2014 , 83, 1335-53	13.9	232
59	Reply to Joel and Tarrasch: On misreading and shooting the messenger. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E638	11.5	5
58	Amotivation in schizophrenia: integrated assessment with behavioral, clinical, and imaging measures. <i>Schizophrenia Bulletin</i> , 2014 , 40, 1328-37	1.3	131
57	The psychosis spectrum in a young U.S. community sample: findings from the Philadelphia Neurodevelopmental Cohort. <i>World Psychiatry</i> , 2014 , 13, 296-305	14.4	120
56	Neurocognitive growth charting in psychosis spectrum youths. <i>JAMA Psychiatry</i> , 2014 , 71, 366-74	14.5	160
55	Sex differences in the effect of puberty on hippocampal morphology. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2014 , 53, 341-50.e1	7.2	71
54	Discriminative sparse connectivity patterns for classification of fMRI Data. <i>Lecture Notes in Computer Science</i> , 2014 , 17, 193-200	0.9	6
53	Oral alprazolam acutely increases nucleus accumbens perfusion. <i>Molecular Psychiatry</i> , 2013 , 18, 960-1	15.1	5
52	Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth. <i>NeuroImage</i> , 2013 , 83, 45-57	7.9	167
51	An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. <i>NeuroImage</i> , 2013 , 64, 240-56	7.9	1024
50	Unsupervised learning of functional network dynamics in resting state fMRI. <i>Lecture Notes in Computer Science</i> , 2013 , 23, 426-37	0.9	54
49	Functional maturation of the executive system during adolescence. <i>Journal of Neuroscience</i> , 2013 , 33, 16249-61	6.6	168
48	IDENTIFYING PATTERNS IN TEMPORAL VARIATION OF FUNCTIONAL CONNECTIVITY USING RESTING STATE FMRI 2013 , 2013, 1086-1089	1.5	6

ODVBA-C: Optimally-Discriminative Voxel-Based Analysis of Continuous Variables. *International Workshop on Pattern Recognition in NeuroImaging*, **2013**, 2013, 161-164

46	Neural correlates of depressive realisman fMRI study on causal attribution in depression. <i>Journal of Affective Disorders</i> , 2012 , 138, 268-76	6.6	27
45	Sparse dictionary learning of resting state fMRI networks. <i>International Workshop on Pattern Recognition in NeuroImaging</i> , 2012 , 73-76		20
44	Multivariate fMRI Analysis using Optimally-Discriminative Voxel-Based Analysis. <i>International Workshop on Pattern Recognition in NeuroImaging</i> , 2012 , 2012, 33-36		3
43	Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. <i>NeuroImage</i> , 2012 , 60, 623-32	7.9	837
42	Being right is its own reward: load and performance related ventral striatum activation to correct responses during a working memory task in youth. <i>NeuroImage</i> , 2012 , 61, 723-9	7.9	109
41	Opposing amygdala and ventral striatum connectivity during emotion identification. <i>Brain and Cognition</i> , 2011 , 76, 353-63	2.7	18
40	Striatal intrinsic reinforcement signals during recognition memory: relationship to response bias and dysregulation in schizophrenia. <i>Frontiers in Behavioral Neuroscience</i> , 2011 , 5, 81	3.5	17
39	Amygdala abnormalities in first-degree relatives of individuals with schizophrenia unmasked by benzodiazepine challenge. <i>Psychopharmacology</i> , 2011 , 218, 503-12	4.7	24
38	Cardiac complications of ECT: myocardial stunning syndrome and takotsubo cardiomyopathy after ECT: different names for the same phenomenon. <i>Journal of ECT</i> , 2010 , 26, 146-7	2	4
37	Association of enhanced limbic response to threat with decreased cortical facial recognition memory response in schizophrenia. <i>American Journal of Psychiatry</i> , 2010 , 167, 418-26	11.9	48
36	Electroconvulsive therapy in a 72-year-old woman with a history of Takotsubo cardiomyopathy: a case report and review of the literature. <i>Brain Stimulation</i> , 2009 , 2, 238-40	5.1	12
35	Frontolimbic responses to emotional face memory: the neural correlates of first impressions. <i>Human Brain Mapping</i> , 2009 , 30, 3748-58	5.9	22
34	A meta-analysis of the risk of acute extrapyramidal symptoms with intramuscular antipsychotics for the treatment of agitation. <i>Journal of Clinical Psychiatry</i> , 2008 , 69, 1869-79	4.6	53
33	Dissociable but inter-related systems of cognitive control and reward during decision making: evidence from pupillometry and event-related fMRI. <i>NeuroImage</i> , 2007 , 37, 1017-31	7.9	94
32	Efficient coding in the economics of human brain connectomics. <i>Network Neuroscience</i> ,1-40	5.6	1
31	Moving Beyond Processing and Analysis-Related Variation in Neuroscience		4
30	neuromaps: structural and functional interpretation of brain maps		3

29	Optimization of Energy State Transition Trajectory Supports the Development of Executive Function During Youth	1
28	Cannabis Use in Youth is Associated with Limited Alterations in Brain Structure	1
27	Neurostructural Heterogeneity in Youth with Internalizing Symptoms	1
26	Advantages of Multi-shell Diffusion for Studies of Brain Development in Youth	1
25	Structural and functional brain parameters related to cognitive performance across development: Replication and extension of the parieto-frontal integration theory in a single sample	1
24	Development of structure-function coupling in human brain networks during youth	1
23	Sex differences in Variability of Brain Structure Across the Lifespan	1
22	MIMoSA: A Method for Inter-Modal Segmentation Analysis	3
21	Efficient Coding in the Economics of Human Brain Connectomics	3
20	Greater male than female variability in regional brain structure across the lifespan	2
19	Cortical Thickness Trajectories across the Lifespan: Data from 17,075 healthy individuals aged 3-90 years	4
18	Subcortical Volume Trajectories across the Lifespan: Data from 18,605 healthy individuals aged 3-90 years	6
17	Statistical Pitfalls in Brain Age Analyses	3
16	QSIPrep: An integrative platform for preprocessing and reconstructing diffusion MRI	10
15	The correspondence problem: which brain maps are significantly similar?	2
14	Context-dependent architecture of brain state dynamics is explained by white matter connectivity and theories of network control	1
13	Multi-Scale Network Regression for Brain-Phenotype Associations	2
12	Individual Variation in Control Network Topography Supports Executive Function in Youth	1

LIST OF PUBLICATIONS

11	imaging patterns of structural brain change throughout the lifespan	1
10	Data-driven Assessment of Structural Image Quality	3
9	The Impact of In-Scanner Head Motion on Structural Connectivity Derived from Diffusion Tensor Imaging	1
8	Linked dimensions of psychopathology and connectivity in functional brain networks	1
7	Normative Brain Size Variation and the Remodeling of Brain Shape in Humans	1
6	Network controllability mediates the relationship between rigid structure and flexible dynamics	1
5	A Developmental Reduction of the Excitation:Inhibition Ratio in Association Cortex during Adolescence	1
4	ASLPrep: A Generalizable Platform for Processing of Arterial Spin Labeled MRI and Quantification of Regional Brain Perfusion	1
3	Brain charts for the human lifespan	8
2	Adolescent Brain Cognitive Development (ABCD) Community MRI Collection and Utilities	5
1	Dissociable Multi-scale Patterns of Development in Personalized Brain Networks	1