
Arne Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9916813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SERCA2a gain of function in patient-derived R14Del hiPSC-CMs. Journal of General Physiology, 2022, 154,	1.9	0
2	Comprehensive analyses of the inotropic compound omecamtiv mecarbil in rat and human cardiac preparations. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H373-H385.	3.2	11
3	Human engineered heart tissue transplantation in a guinea pig chronic injury model. Journal of Molecular and Cellular Cardiology, 2022, 166, 1-10.	1.9	12
4	RGS3L allows for an M2 muscarinic receptor-mediated RhoA-dependent inotropy in cardiomyocytes. Basic Research in Cardiology, 2022, 117, 8.	5.9	2
5	PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 2022, 29, 559-576.e7.	11.1	34
6	Hypertrophic signaling compensates for contractile and metabolic consequences of DNA methyltransferase 3A loss in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 154, 115-123.	1.9	3
7	Sulforaphane exposure impairs contractility and mitochondrial function in three-dimensional engineered heart tissue. Redox Biology, 2021, 41, 101951.	9.0	11
8	Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation. EMBO Molecular Medicine, 2021, 13, e13074.	6.9	34
9	Regulation of basal and norepinephrine-induced cAMP and ICa in hiPSC-cardiomyocytes: Effects of culture conditions and comparison to adult human atrial cardiomyocytes. Cellular Signalling, 2021, 82, 109970.	3.6	4
10	Angiotensin II receptor blocker intake associates with reduced markers of inflammatory activation and decreased mortality in patients with cardiovascular comorbidities and COVID-19 disease. PLoS ONE, 2021, 16, e0258684.	2.5	5
11	Intermittent Optogenetic Tachypacing of Atrial Engineered Heart Tissue Induces Only Limited Electrical Remodelling. Journal of Cardiovascular Pharmacology, 2021, 77, 291-299.	1.9	11
12	Therapeutic inhibition of RBM20 improves diastolic function in a murine heart failure model and human engineered heart tissue. Science Translational Medicine, 2021, 13, eabe8952.	12.4	14
13	Characterization of the PLN p.Arg14del Mutation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 13500.	4.1	16
14	Chronic intermittent tachypacing by an optogenetic approach induces arrhythmia vulnerability in human engineered heart tissue. Cardiovascular Research, 2020, 116, 1487-1499.	3.8	38
15	Comparison of 10 Control hPSC Lines for Drug Screening in an Engineered Heart Tissue Format. Stem Cell Reports, 2020, 15, 983-998.	4.8	45
16	Cell Banking of hiPSCs: A Practical Guide to Cryopreservation and Quality Control in Basic Research. Current Protocols in Stem Cell Biology, 2020, 55, e127.	3.0	10
17	Regulation of I Ca,L and force by PDEs in humanâ€induced pluripotent stem cellâ€derived cardiomyocytes. British Journal of Pharmacology, 2020, 177, 3036-3045.	5.4	10
18	Case Report on: Very Early Afterdepolarizations in HiPSC-Cardiomyocytes—An Artifact by Big Conductance Calcium Activated Potassium Current (Ibk,Ca). Cells, 2020, 9, 253.	4.1	10

Arne Hansen

#	Article	IF	CITATIONS
19	Force and Calcium Transients Analysis in Human Engineered Heart Tissues Reveals Positive Force-Frequency Relation at Physiological Frequency. Stem Cell Reports, 2020, 14, 312-324.	4.8	40
20	Human iPS cell-derived engineered heart tissue does not affect ventricular arrhythmias in a guinea pig cryo-injury model. Scientific Reports, 2019, 9, 9831.	3.3	28
21	Disease modeling of a mutation in αâ€actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Molecular Medicine, 2019, 11, e11115.	6.9	88
22	Implantation of hiPSC-derived Cardiac-muscle Patches after Myocardial Injury in a Guinea Pig Model. Journal of Visualized Experiments, 2019, , .	0.3	13
23	Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes. Stem Cell Reports, 2018, 10, 822-833.	4.8	92
24	Contractile Work Contributes to Maturation of Energy Metabolism in hiPSC-Derived Cardiomyocytes. Stem Cell Reports, 2018, 10, 834-847.	4.8	148
25	Atrial-like Engineered Heart Tissue: An InÂVitro Model of the Human Atrium. Stem Cell Reports, 2018, 11, 1378-1390.	4.8	132
26	Clonal dynamics studied in cultured induced pluripotent stem cells reveal major growth imbalances within a few weeks. Stem Cell Research and Therapy, 2018, 9, 165.	5.5	8
27	CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. European Heart Journal, 2018, 39, 3879-3892.	2.2	176
28	Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nature Protocols, 2017, 12, 1177-1197.	12.0	197
29	Blinded Contractility Analysis in hiPSC-Cardiomyocytes in Engineered Heart Tissue Format: Comparison With Human Atrial Trabeculae. Toxicological Sciences, 2017, 158, 164-175.	3.1	52
30	Evaluation of MYBPC3 trans -Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. Molecular Therapy - Nucleic Acids, 2017, 7, 475-486.	5.1	74
31	Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Scientific Reports, 2017, 7, 5464.	3.3	140
32	Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS ONE, 2016, 11, e0145937.	2.5	36
33	Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Science Translational Medicine, 2016, 8, 363ra148.	12.4	215
34	Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports, 2016, 7, 29-42.	4.8	292
35	Human engineered heart tissue as a model system for drug testing. Advanced Drug Delivery Reviews, 2016, 96, 214-224.	13.7	146
36	Spontaneous Formation of Extensive Vessel-Like Structures in Murine Engineered Heart Tissue. Tissue Engineering - Part A, 2016, 22, 326-335.	3.1	19

Arne Hansen

#	Article	IF	CITATIONS
37	Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation. PLoS ONE, 2016, 11, e0166963.	2.5	15
38	Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. Journal of Molecular and Cellular Cardiology, 2015, 81, 1-9.	1.9	41
39	Engineering Cardiovascular Regeneration. Current Stem Cell Reports, 2015, 1, 67-78.	1.6	0
40	Immunobiology of Fibrin-Based Engineered Heart Tissue. Stem Cells Translational Medicine, 2015, 4, 625-631.	3.3	10
41	Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. Journal of Molecular and Cellular Cardiology, 2014, 74, 151-161.	1.9	305
42	Development of a Drug Screening Platform Based on Engineered Heart Tissue. Circulation Research, 2010, 107, 35-44.	4.5	420