Andres M Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9916286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus. Frontiers in Microbiology, 2016, 7, 400.	1.5	132
2	Nanotechnology: Review of concepts and potential application of sensing platforms in food safety. Food Microbiology, 2018, 75, 47-54.	2.1	131
3	Portable GMR Handheld Platform for the Detection of Influenza A Virus. ACS Sensors, 2017, 2, 1594-1601.	4.0	96
4	Evaluation of the sensitivity and specificity of bovine tuberculosis diagnostic tests in naturally infected cattle herds using a Bayesian approach. Veterinary Microbiology, 2012, 155, 38-43.	0.8	89
5	Salmonella enterica Serotype 4,[5],12:i:- in Swine in the United States Midwest: An Emerging Multidrug-Resistant Clade. Clinical Infectious Diseases, 2018, 66, 877-885.	2.9	79
6	Impact of Porcine Epidemic Diarrhea on Performance of Growing Pigs. PLoS ONE, 2015, 10, e0120532.	1.1	66
7	African swine fever in the Dominican Republic. Transboundary and Emerging Diseases, 2021, 68, 3018-3019.	1.3	66
8	Applications of Bayesian Phylodynamic Methods in a Recent U.S. Porcine Reproductive and Respiratory Syndrome Virus Outbreak. Frontiers in Microbiology, 2016, 7, 67.	1.5	61
9	Serotypes and Antimicrobial Resistance in Salmonella enterica Recovered from Clinical Samples from Cattle and Swine in Minnesota, 2006 to 2015. PLoS ONE, 2016, 11, e0168016.	1.1	58
10	Network analysis of cattle movements in Uruguay: Quantifying heterogeneity for risk-based disease surveillance and control. Preventive Veterinary Medicine, 2016, 123, 12-22.	0.7	58
11	Role of animal movement and indirect contact among farms in transmission of porcine epidemic diarrhea virus. Epidemics, 2018, 24, 67-75.	1.5	56
12	Detection of Influenza a Virus in Swine Nasal Swab Samples With a Wash-Free Magnetic Bioassay and a Handheld Giant Magnetoresistance Sensing System. Frontiers in Microbiology, 2019, 10, 1077.	1.5	53
13	Translating Big Data into Smart Data for Veterinary Epidemiology. Frontiers in Veterinary Science, 2017, 4, 110.	0.9	47
14	Epidemiological factors associated to spread of porcine epidemic diarrhea in Japan. Preventive Veterinary Medicine, 2016, 123, 161-167.	0.7	43
15	Risk factors associated with negative in-vivodiagnostic results in bovine tuberculosis-infected cattle in Spain. BMC Veterinary Research, 2014, 10, 14.	0.7	41
16	Risk of African swine fever virus introduction into the United States through smuggling of pork in air passenger luggage. Scientific Reports, 2019, 9, 14423.	1.6	40
17	Spatial and temporal epidemiology of porcine epidemic diarrhea (PED) in the Midwest and Southeast regions of the United States. Preventive Veterinary Medicine, 2016, 123, 155-160.	0.7	35
18	Association between Influenza A Virus Infection and Pigs Subpopulations in Endemically Infected Breeding Herds. PLoS ONE, 2015, 10, e0129213.	1.1	33

#	Article	IF	CITATIONS
19	Using Machine Learning to Predict Swine Movements within a Regional Program to Improve Control of Infectious Diseases in the US. Frontiers in Veterinary Science, 2017, 4, 2.	0.9	33
20	Optimal surveillance strategies for bovine tuberculosis in a low-prevalence country. Scientific Reports, 2017, 7, 4140.	1.6	31
21	Individual or Common Good? Voluntary Data Sharing to Inform Disease Surveillance Systems in Food Animals. Frontiers in Veterinary Science, 2019, 6, 194.	0.9	30
22	Parameter Values for Epidemiological Models of Foot-and-Mouth Disease in Swine. Frontiers in Veterinary Science, 2016, 3, 44.	0.9	29
23	Analysis of the cattle movement network and its association with the risk of bovine tuberculosis at the farm level in Castilla y Leon, Spain. Transboundary and Emerging Diseases, 2019, 66, 327-340.	1.3	29
24	Land altitude, slope, and coverage as risk factors for Porcine Reproductive and Respiratory Syndrome (PRRS) outbreaks in the United States. PLoS ONE, 2017, 12, e0172638.	1.1	28
25	Bovine tuberculosis: Within-herd transmission models to support and direct the decision-making process. Research in Veterinary Science, 2014, 97, S61-S68.	0.9	27
26	Novel approaches for Spatial and Molecular Surveillance of Porcine Reproductive and Respiratory Syndrome Virus (PRRSv) in the United States. Scientific Reports, 2017, 7, 4343.	1.6	27
27	Mapping changes in the spatiotemporal distribution of lumpy skin disease virus. Transboundary and Emerging Diseases, 2019, 66, 2045-2057.	1.3	27
28	Global emergence and evolutionary dynamics of bluetongue virus. Scientific Reports, 2020, 10, 21677.	1.6	26
29	Production Losses From an Endemic Animal Disease: Porcine Reproductive and Respiratory Syndrome (PRRS) in Selected Midwest US Sow Farms. Frontiers in Veterinary Science, 2018, 5, 102.	0.9	25
30	Genetic Determinants of Resistance to Extended-Spectrum Cephalosporin and Fluoroquinolone in Escherichia coli Isolated from Diseased Pigs in the United States. MSphere, 2020, 5, .	1.3	23
31	Transmission of Foot-and-Mouth Disease SAT2 Viruses at the Wildlife–Livestock Interface of Two Major Transfrontier Conservation Areas in Southern Africa. Frontiers in Microbiology, 2016, 7, 528.	1.5	22
32	Epidemiological investigation of bovine tuberculosis outbreaks in Uruguay (2011–2013). Preventive Veterinary Medicine, 2017, 138, 156-161.	0.7	22
33	Spatial distribution and risk factors for foot and mouth disease virus in Uganda: Opportunities for strategic surveillance. Preventive Veterinary Medicine, 2019, 171, 104766.	0.7	22
34	Genetic Diversity of PRRS Virus Collected from Air Samples in Four Different Regions of Concentrated Swine Production during a High Incidence Season. Viruses, 2014, 6, 4424-4436.	1.5	21
35	Effect of the inoculation site of bovine purified protein derivative (PPD) on the skin fold thickness increase in cattle from officially tuberculosis free and tuberculosis-infected herds. Preventive Veterinary Medicine, 2015, 121, 86-92.	0.7	21
36	Prevalence and time trend analysis of antimicrobial resistance in respiratory bacterial pathogens collected from diseased pigs in USA between 2006–2016. Research in Veterinary Science, 2020, 128, 135-144.	0.9	20

#	Article	IF	CITATIONS
37	Novel analytic tools for the study of porcine reproductive and respiratory syndrome virus (PRRSv) in endemic settings: lessons learned in the U.S Porcine Health Management, 2016, 2, 3.	0.9	19
38	Evaluation of the Performance of the IDvet IFN-Gamma Test for Diagnosis of Bovine Tuberculosis in Spain. Frontiers in Veterinary Science, 2018, 5, 229.	0.9	19
39	Phylogeographical and crossâ€species transmission dynamics of SAT1 and SAT2 footâ€andâ€mouth disease virus in Eastern Africa. Molecular Ecology, 2019, 28, 2903-2916.	2.0	19
40	Association between results of diagnostic tests for bovine tuberculosis and Johne's disease in cattle. Veterinary Record, 2019, 185, 693-693.	0.2	19
41	Prevalence and trend analysis of antimicrobial resistance in clinical Escherichia coli isolates collected from diseased pigs in the USA between 2006 and 2016. Transboundary and Emerging Diseases, 2020, 67, 1930-1941.	1.3	19
42	Surveillance of porcine reproductive and respiratory syndrome virus in the United States using risk mapping and species distribution modeling. Preventive Veterinary Medicine, 2018, 150, 135-142.	0.7	19
43	Comparison between the 2013-2014 and 2009-2012 annual porcine reproductive and respiratory syndrome virus epidemics in a cohort of sow herds in the United States. Canadian Veterinary Journal, 2015, 56, 1087-9.	0.0	19
44	Measuring Progress on the Control of Porcine Reproductive and Respiratory Syndrome (PRRS) at a Regional Level: The Minnesota N212 Regional Control Project (Rcp) as a Working Example. PLoS ONE, 2016, 11, e0149498.	1.1	18
45	Estimation of Time-Dependent Reproduction Numbers for Porcine Reproductive and Respiratory Syndrome across Different Regions and Production Systems of the US. Frontiers in Veterinary Science, 2017, 4, 46.	0.9	18
46	Time-series analysis for porcine reproductive and respiratory syndrome in the United States. PLoS ONE, 2018, 13, e0195282.	1.1	18
47	Association of the presence of influenza A virus and porcine reproductive and respiratory syndrome virus in sow farms with post-weaning mortality. Preventive Veterinary Medicine, 2015, 121, 240-245.	0.7	17
48	Effect of strain-specific maternally-derived antibodies on influenza A virus infection dynamics in nursery pigs. PLoS ONE, 2019, 14, e0210700.	1.1	17
49	Transmission of Multidrug-Resistant Salmonella enterica Subspecies enterica 4,[5],12:i:- Sequence Type 34 between Europe and the United States. Emerging Infectious Diseases, 2020, 26, 3034-3038.	2.0	17
50	Spatial Dynamics of Bovine Tuberculosis in the Autonomous Community of Madrid, Spain (2010–2012). PLoS ONE, 2014, 9, e115632.	1.1	16
51	Spatial dynamics of porcine epidemic diarrhea (PED) spread in the southern Kyushu, Japan. Preventive Veterinary Medicine, 2017, 144, 81-88.	0.7	16
52	Breed-to-wean farm factors associated with influenza A virus infection in piglets at weaning. Preventive Veterinary Medicine, 2018, 161, 33-40.	0.7	16
53	Spatial modelling for low pathogenicity avian influenza virus at the interface of wild birds and backyard poultry. Transboundary and Emerging Diseases, 2019, 66, 1493-1505.	1.3	16
54	Circulation of Plasmids Harboring Resistance Genes to Quinolones and/or Extended-Spectrum Cephalosporins in Multiple Salmonella enterica Serotypes from Swine in the United States. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	16

#	Article	IF	CITATIONS
55	Comparison of intervention methods for reducing human exposure to Mycobacterium bovis through milk in pastoralist households of Tanzania. Preventive Veterinary Medicine, 2014, 115, 157-165.	0.7	15
56	Assessment of the sensitivity of the bovine tuberculosis eradication program in a high prevalence region of Spain using scenario tree modeling. Preventive Veterinary Medicine, 2019, 173, 104800.	0.7	15
57	Serological and phylogenetic characterization of foot and mouth disease viruses from Uganda during crossâ€sectional surveillance study in cattle between 2014 and 2017. Transboundary and Emerging Diseases, 2019, 66, 2011-2024.	1.3	15
58	An Introductory Framework for Choosing Spatiotemporal Analytical Tools in Population-Level Eco-Epidemiological Research. Frontiers in Veterinary Science, 2020, 7, 339.	0.9	14
59	The role of African buffalo in the epidemiology of footâ€andâ€mouth disease in sympatric cattle and buffalo populations in Kenya. Transboundary and Emerging Diseases, 2020, 67, 2206.	1.3	14
60	Visualization and Analysis of the Danish 2006 Highly Pathogenic Avian Influenza Virus H5N1 Wild Bird Surveillance Data by a Prototype Avian Influenza BioPortal. Avian Diseases, 2010, 54, 433-439.	0.4	13
61	Monitoring the Spread of Swine Enteric Coronavirus Diseases in the United States in the Absence of a Regulatory Framework. Frontiers in Veterinary Science, 2016, 3, 18.	0.9	12
62	Identifying individual animal factors associated with Mycobacterium avium subsp. paratuberculosis (MAP) milk ELISA positivity in dairy cattle in the Midwest region of the United States. BMC Veterinary Research, 2018, 14, 28.	0.7	12
63	Past, Present, and Future of Veterinary Epidemiology and Economics: One Health, Many Challenges, No Silver Bullets. Frontiers in Veterinary Science, 2015, 2, 60.	0.9	11
64	Molecular Characterization and Cluster Analysis of Field Isolates of Avian Infectious Laryngotracheitis Virus from Argentina. Frontiers in Veterinary Science, 2017, 4, 212.	0.9	11
65	Bayesian estimation of ELISA and gamma interferon test accuracy for the detection of bovine tuberculosis in caudal fold test‑negative dairy cattle in Kuwait. Journal of Veterinary Diagnostic Investigation, 2018, 30, 468-470.	0.5	11
66	A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota. Frontiers in Veterinary Science, 2017, 4, 231.	0.9	11
67	Comparing serotyping with whole-genome sequencing for subtyping of non-typhoidal Salmonella enterica: a large-scale analysis of 37 serotypes with a public health impact in the USA. Microbial Genomics, 2020, 6, .	1.0	11
68	Revisiting area risk classification of visceral leishmaniasis in Brazil. BMC Infectious Diseases, 2019, 19, 2.	1.3	10
69	Quantitative Risk Assessment of Foot-and-Mouth Disease (FMD) Virus Introduction Into the FMD-Free Zone Without Vaccination of Argentina Through Legal and Illegal Trade of Bone-in Beef and Unvaccinated Susceptible Species. Frontiers in Veterinary Science, 2019, 6, 78.	0.9	10
70	Modeling the Accuracy of Two in-vitro Bovine Tuberculosis Tests Using a Bayesian Approach. Frontiers in Veterinary Science, 2019, 6, 261.	0.9	9
71	Spatioâ€ŧemporal cluster analysis and transmission drivers for Peste des Petits Ruminants in Uganda. Transboundary and Emerging Diseases, 2022, 69, .	1.3	9
72	Comparison of spatiotemporal patterns of historic natural Anthrax outbreaks in Minnesota and Kazakhstan. PLoS ONE, 2019, 14, e0217144.	1.1	8

#	Article	IF	CITATIONS
73	Genetic variability of influenza A virus in pigs at weaning in Midwestern United States swine farms. Transboundary and Emerging Diseases, 2021, 68, 62-75.	1.3	8
74	Rethinking the uncertainty of African swine fever virus contamination in feed ingredients and risk of introduction into the United States. Transboundary and Emerging Diseases, 2021, , .	1.3	8
75	<i>Mycobacterium bovis</i> infection in a horse with granulomatous enterocolitis. Journal of Veterinary Diagnostic Investigation, 2015, 27, 203-205.	0.5	7
76	Risk of Introduction of Bovine Tuberculosis (TB) Into TB-Free Herds in Southern Bahia, Brazil, Associated With Movement of Live Cattle. Frontiers in Veterinary Science, 2018, 5, 230.	0.9	7
77	Choosing awareness over fear: Risk analysis and free trade support global food security. Global Food Security, 2020, 26, 100445.	4.0	7
78	Risk for African Swine Fever Introduction Into Kazakhstan. Frontiers in Veterinary Science, 2021, 8, 605910.	0.9	7
79	Partitioning, a Novel Approach to Mitigate the Risk and Impact of African Swine Fever in Affected Areas. Frontiers in Veterinary Science, 2021, 8, 812876.	0.9	7
80	Global Distribution of Fluoroquinolone and Colistin Resistance and Associated Resistance Markers in Escherichia coli of Swine Origin – A Systematic Review and Meta-Analysis. Frontiers in Microbiology, 2022, 13, 834793.	1.5	7
81	A Review of Quantitative Tools Used to Assess the Epidemiology of Porcine Reproductive and Respiratory Syndrome in U.S. Swine Farms Using Dr. Morrison's Swine Health Monitoring Program Data. Frontiers in Veterinary Science, 2017, 4, 94.	0.9	6
82	Bayesian Assessment of the Accuracy of a PCR-Based Rapid Diagnostic Test for Bovine Tuberculosis in Swine. Frontiers in Veterinary Science, 2019, 6, 204.	0.9	6
83	Effect of influenza A virus sow vaccination on infection in pigs at weaning: A prospective longitudinal study. Transboundary and Emerging Diseases, 2021, 68, 183-193.	1.3	6
84	Impact of mass vaccination on the spatiotemporal dynamics of FMD outbreaks in India, 2008–2016. Transboundary and Emerging Diseases, 2022, , .	1.3	6
85	Semiquantitative Decision Tools for FMD Emergency Vaccination Informed by Field Observations and Simulated Outbreak Data. Frontiers in Veterinary Science, 2017, 4, 43.	0.9	5
86	Lessons Learned From the Stakeholder Engagement in Research: Application of Spatial Analytical Tools in One Health Problems. Frontiers in Veterinary Science, 2020, 7, 254.	0.9	5
87	Genetic Diversity of Circulating Foot and Mouth Disease Virus in Uganda Cross-Sectional Study During 2014–2017. Frontiers in Veterinary Science, 2020, 7, 162.	0.9	5
88	Modelling the effect of testâ€andâ€slaughter strategies to control bovine tuberculosis in endemic high prevalence herds. Transboundary and Emerging Diseases, 2021, 68, 1205-1215.	1.3	5
89	Self-Reporting of Risk Pathways and Parameter Values for Foot-and-Mouth Disease in Slaughter Cattle from Alternative Production Systems by Kenyan and Ugandan Veterinarians. Viruses, 2021, 13, 2112.	1.5	5
90	Mapping the risks of the spread of peste des petits ruminants in the Republic of Kazakhstan. Transboundary and Emerging Diseases, 2022, 69, 2296-2305.	1.3	4

#	Article	IF	CITATIONS
91	Use of Slaughterhouses as Sentinel Points for Genomic Surveillance of Foot-and-Mouth Disease Virus in Southern Vietnam. Viruses, 2021, 13, 2203.	1.5	4
92	Subdistrict-Level Reproductive Number for Foot and Mouth Disease in Cattle in Northern Thailand. Frontiers in Veterinary Science, 2021, 8, 757132.	0.9	4
93	Footâ€andâ€mouth disease in Kazakhstan. Transboundary and Emerging Diseases, 2022, 69, 1712-1714.	1.3	4
94	Phylogeographic analysis of the 2000–2002 foot-and-mouth disease epidemic in Argentina. Infection, Genetics and Evolution, 2016, 41, 93-99.	1.0	3
95	Editorial: Foot-and-Mouth Disease in Swine. Frontiers in Veterinary Science, 2017, 4, 133.	0.9	3
96	Understanding Q Fever Risk to Humans in Minnesota Through the Analysis of Spatiotemporal Trends. Vector-Borne and Zoonotic Diseases, 2018, 18, 89-95.	0.6	3
97	One Coin, Two Sides: Eliciting Expert Knowledge From Training Participants in a Capacity-Building Program for Veterinary Professionals. Frontiers in Veterinary Science, 2021, 8, 729159.	0.9	3
98	A Molecular and Epidemiological Description of a Severe Porcine Reproductive and Respiratory Syndrome Outbreak in a Commercial Swine Production System in Russia. Viruses, 2022, 14, 375.	1.5	3
99	Epidemiological characterization of Clonorchis sinensis infection in humans and freshwater fish in Guangxi, China. BMC Infectious Diseases, 2022, 22, 263.	1.3	3
100	Editorial: Big Data – The Language and Future of One Medicine, One Science. Frontiers in Veterinary Science, 2018, 5, 114.	0.9	2
101	OptisampleTM: Open web-based application to optimize sampling strategies for active surveillance activities at the herd level illustrated using Porcine Respiratory Reproductive Syndrome (PRRS). PLoS ONE, 2017, 12, e0176863.	1.1	2
102	Assessment of the Risk of Foot and Mouth Disease among Beef Cattle at Slaughter from East African Production Systems. Viruses, 2021, 13, 2407.	1.5	2
103	Editorial: Applications of STEM (Science, Technology, Engineering and Mathematics) Tools in Microbiology of Infectious Diseases. Frontiers in Microbiology, 2017, 8, 215.	1.5	0
104	Editorial: Blindness, Light, and the COVID-19 Pandemic. Frontiers in Veterinary Science, 2021, 8, 689981.	0.9	0
105	Editorial: Principles and Challenges of Fundamental Methods in Veterinary Epidemiology and Economics. Frontiers in Veterinary Science, 2021, 8, 705980.	0.9	0
106	Risk of Introduction of Classical Swine Fever Into the State of Mato Grosso, Brazil. Frontiers in Veterinary Science, 2021, 8, 647838.	0.9	0