Jakub D Zarsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/991593/publications.pdf Version: 2024-02-01

IAKLIB D ZADSKY

#	Article	IF	CITATIONS
1	Biological processes on glacier and ice sheet surfaces. Nature Geoscience, 2012, 5, 771-774.	12.9	200
2	The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME Journal, 2013, 7, 1814-1826.	9.8	132
3	Greenland melt drives continuous export of methane from the ice-sheet bed. Nature, 2019, 565, 73-77.	27.8	72
4	Glacier Algae: A Dark Past and a Darker Future. Frontiers in Microbiology, 2019, 10, 524.	3.5	59
5	Microbial abundance in surface ice on the Greenland Ice Sheet. Frontiers in Microbiology, 2015, 6, 225.	3.5	54
6	Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea. Environmental Research Letters, 2013, 8, 035044.	5.2	48
7	Supraglacial bacterial community structures vary across the Greenland ice sheet. FEMS Microbiology Ecology, 2016, 92, fiv164.	2.7	48
8	Meltwater export of prokaryotic cells from the Greenland ice sheet. Environmental Microbiology, 2017, 19, 524-534.	3.8	40
9	Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard. Biogeosciences, 2016, 13, 659-674.	3.3	35
10	Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland Ice Sheet. Geophysical Research Letters, 2017, 44, 6209-6217.	4.0	32
11	No indication of arthropod-vectored viruses in mosquitoes (Diptera: Culicidae) collected on Greenland and Svalbard. Polar Biology, 2018, 41, 1581-1586.	1.2	29
12	Patterns in Microbial Assemblages Exported From the Meltwater of Arctic and Sub-Arctic Glaciers. Frontiers in Microbiology, 2020, 11, 669.	3.5	24
13	Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190098.	2.1	20
14	Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split. Frontiers in Plant Science, 2021, 12, 735020.	3.6	15
15	The Biogeochemical Legacy of Arctic Subglacial Sediments Exposed by Glacier Retreat. Global Biogeochemical Cycles, 2022, 36, .	4.9	14
16	Microbial Cell Retention in a Melting High Arctic Snowpack, Svalbard. Arctic, Antarctic, and Alpine Research, 2014, 46, 471-482.	1.1	12
17	Prokaryotic assemblages in suspended and subglacial sediments within a glacierized catchment on Qeqertarsuaq (Disko Island), west Greenland. FEMS Microbiology Ecology, 2018, 94, .	2.7	12
18	Kuannersuit Glacier revisited: Constraining ice dynamics, landform formations and glaciomorphological changes in the early quiescent phase following the 1995–98 surge event. Geomorphology, 2019, 330, 89-99.	2.6	11

#	Article	IF	CITATIONS
19	Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network. Biogeosciences, 2021, 18, 1543-1557.	3.3	11
20	Diatoms in cryoconite holes and adjacent proglacial freshwater sediments, Nordenskiöld glacier (Spitsbergen, High Arctic). Czech Polar Reports, 2015, 5, 112-133.	0.6	4