Robin A Ohm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9915608/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	6.0	1,424
2	MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Research, 2014, 42, D699-D704.	6.5	1,187
3	Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47, 410-415.	9.4	870
4	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	2.1	595
5	Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 2010, 28, 957-963.	9.4	490
6	The Genome Portal of the Department of Energy Joint Genome Institute. Nucleic Acids Research, 2012, 40, D26-D32.	6.5	439
7	Genome sequence of the button mushroom <i>Agaricus bisporus</i> reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17501-17506.	3.3	359
8	Comparative genomics of biotechnologically important yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9882-9887.	3.3	302
9	Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics, 2014, 15, 549.	1.2	262
10	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	5.8	258
11	Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens. PLoS Genetics, 2013, 9, e1003233.	1.5	232
12	The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry. PLoS Genetics, 2012, 8, e1003088.	1.5	226
13	Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities. Molecular Biology and Evolution, 2016, 33, 959-970.	3.5	213
14	Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology and Evolution, 2019, 3, 668-678.	3.4	187
15	Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 2018, 217, 1213-1229.	3.5	185
16	Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants. Genome Biology and Evolution, 2015, 7, 1590-1601.	1.1	175
17	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	1.8	175
18	Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature Communications, 2016, 7, 12662.	5.8	156

ROBIN А ОНМ

#	Article	IF	CITATIONS
19	Comparative genomics of <i>Mortierella elongata</i> and its bacterial endosymbiont <i>Mycoavidus cysteinexigens</i> . Environmental Microbiology, 2017, 19, 2964-2983.	1.8	154
20	Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genetics and Biology, 2015, 76, 78-92.	0.9	141
21	Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific Reports, 2018, 8, 6321.	1.6	138
22	Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. Fungal Genetics and Biology, 2009, 46, S161-S169.	0.9	133
23	Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nature Communications, 2014, 5, 4471.	5.8	133
24	Transcription factor genes of <i>Schizophyllum commune</i> involved in regulation of mushroom formation. Molecular Microbiology, 2011, 81, 1433-1445.	1.2	127
25	Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7409-7418.	3.3	115
26	Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics, 2014, 15, 214.	1.2	114
27	Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics, 2015, 16, 620.	1.2	107
28	Genomics of wood-degrading fungi. Fungal Genetics and Biology, 2014, 72, 82-90.	0.9	103
29	Transcription Factor Amr1 Induces Melanin Biosynthesis and Suppresses Virulence in Alternaria brassicicola. PLoS Pathogens, 2012, 8, e1002974.	2.1	91
30	Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage. Frontiers in Microbiology, 2016, 7, 238.	1.5	66
31	The blue light receptor complex <scp>WC</scp> â€1/2 of <i><scp>S</scp>chizophyllum commune</i> is involved in mushroom formation and protection against phototoxicity. Environmental Microbiology, 2013, 15, 943-955.	1.8	64
32	Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3451-3456.	3.3	63
33	Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast <i>Trichosporon oleaginosus</i> : Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems. MBio, 2015, 6, e00918.	1.8	63
34	Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Applied Microbiology and Biotechnology, 2016, 100, 91-111.	1.7	60
35	Heterogenic expression of genes encoding secreted proteins at the periphery of <i>Aspergillus niger</i> colonies. Environmental Microbiology, 2011, 13, 216-225.	1.8	58
36	Fungalâ€specific transcription factor <i><scp>A</scp>b<scp>P</scp>f2</i> activates pathogenicity in <i><scp>A</scp>lternaria brassicicola</i> . Plant Journal, 2013, 75, 498-514.	2.8	58

ROBIN А ОНМ

#	Article	IF	CITATIONS
37	Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors. Frontiers in Microbiology, 2018, 9, 276.	1.5	58
38	Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiology Letters, 2010, 310, 91-95.	0.7	54
39	Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi. Genome Biology and Evolution, 2014, 6, 1564-1578.	1.1	54
40	Genomics and Development of <i>Lentinus tigrinus</i> : A White-Rot Wood-Decaying Mushroom with Dimorphic Fruiting Bodies. Genome Biology and Evolution, 2018, 10, 3250-3261.	1.1	53
41	Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen <i><scp>M</scp>ixia osmundae</i> . New Phytologist, 2014, 202, 554-564.	3.5	52
42	Ant-infecting Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes and a possible major role for enterotoxins. Scientific Reports, 2017, 7, 12508.	1.6	52
43	High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins. Scientific Reports, 2019, 9, 7632.	1.6	50
44	Nucleus-specific expression in the multinuclear mushroom-forming fungus <i>Agaricus bisporus</i> reveals different nuclear regulatory programs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4429-4434.	3.3	48
45	Maturation of conidia on conidiophores of Aspergillus niger. Fungal Genetics and Biology, 2017, 98, 61-70.	0.9	43
46	An efficient gene deletion procedure for the mushroom-forming basidiomycete Schizophyllum commune. World Journal of Microbiology and Biotechnology, 2010, 26, 1919-1923.	1.7	41
47	A Zinc-Finger-Family Transcription Factor, <i>AbVf19</i> , Is Required for the Induction of a Gene Subset Important for Virulence in <i>Alternaria brassicicola</i> . Molecular Plant-Microbe Interactions, 2012, 25, 443-452.	1.4	41
48	The role of homeodomain transcription factors in fungal development. Fungal Biology Reviews, 2018, 32, 219-230.	1.9	33
49	Genetic Underpinnings of Host Manipulation by <i>Ophiocordyceps</i> as Revealed by Comparative Transcriptomics. G3: Genes, Genomes, Genetics, 2020, 10, 2275-2296.	0.8	33
50	Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling. Frontiers in Microbiology, 2017, 8, 1772.	1.5	31
51	Draft Genome Sequence of the Animal and Human Pathogen <i>Malassezia pachydermatis</i> Strain CBS 1879. Genome Announcements, 2015, 3, .	0.8	30
52	The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production. Antonie Van Leeuwenhoek, 2018, 111, 311-322.	0.7	24
53	Genomic and Biochemical Analysis of N Glycosylation in the Mushroom-Forming Basidiomycete <i>Schizophyllum commune</i> . Applied and Environmental Microbiology, 2009, 75, 4648-4652.	1.4	20
54	Coprinopsis cinerea intracellular lactonases hydrolyze quorum sensing molecules of Gram-negative bacteria. Fungal Genetics and Biology, 2017, 102, 49-62.	0.9	19

ROBIN A OHM

#	Article	IF	CITATIONS
55	Impact of maturation and growth temperature on cell-size distribution, heat-resistance, compatible solute composition and transcription profiles of Penicillium roqueforti conidia. Food Research International, 2020, 136, 109287.	2.9	18
56	H3K4me2 ChIP-Seq reveals the epigenetic landscape during mushroom formation and novel developmental regulators of Schizophyllum commune. Scientific Reports, 2021, 11, 8178.	1.6	13
57	Telomere-to-telomere assembled and centromere annotated genomes of the two main subspecies of the button mushroom Agaricus bisporus reveal especially polymorphic chromosome ends. Scientific Reports, 2020, 10, 14653.	1.6	12
58	Expression profile analysis reveals that Aspergillus fumigatus but not Aspergillus niger makes type II epithelial lung cells less immunological alert. BMC Genomics, 2018, 19, 534.	1.2	11
59	Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola. Molecules, 2014, 19, 10717-10732.	1.7	10
60	The Transcription Factor Roc1 Is a Key Regulator of Cellulose Degradation in the Wood-Decaying Mushroom <i>Schizophyllum commune</i> . MBio, 2022, 13, .	1.8	10
61	First evidence of cholinesterase-like activity in Basidiomycota. PLoS ONE, 2019, 14, e0216077.	1.1	9
62	FlbA-Regulated Gene <i>rpnR</i> Is Involved in Stress Resistance and Impacts Protein Secretion when <i>Aspergillus niger</i> Is Grown on Xylose. Applied and Environmental Microbiology, 2019, 85, .	1.4	9
63	Degradative Capacity of Two Strains of Rhodonia placenta: From Phenotype to Genotype. Frontiers in Microbiology, 2020, 11, 1338.	1.5	9
64	Cycling in degradation of organic polymers and uptake of nutrients by a litterâ€degrading fungus. Environmental Microbiology, 2021, 23, 224-238.	1.8	6
65	Genome sequences of 24 <i>Aspergillus niger sensu stricto</i> strains to study strain diversity, heterokaryon compatibility, and sexual reproduction. G3: Genes, Genomes, Genetics, 0, , .	0.8	4
66	High sorbic acid resistance of Penicillium roqueforti is mediated by the SORBUS gene cluster. PLoS Genetics, 2022, 18, e1010086.	1.5	4
67	Production of α-1,3-L-arabinofuranosidase active on substituted xylan does not improve compost degradation by Agaricus bisporus. PLoS ONE, 2018, 13, e0201090.	1.1	3
68	9 FungalÂGenomics. , 2020, , 207-224.		0
69	Targeted gene knock-in reduces variation between transformants in the mushroom-forming fungus Schizophyllum commune. Open Research Europe, 0, 1, 140.	2.0	0