Mohanned Mohamedali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9914718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture. Chemical Engineering Journal, 2018, 334, 817-828.	12.7	144
2	Dissociation Constant (p <i>K</i> _a) and Thermodynamic Properties of Some Tertiary and Cyclic Amines from (298 to 333) K. Journal of Chemical & Engineering Data, 2016, 61, 247-254.	1.9	44
3	lmidazolium based ionic liquids confined into mesoporous silica MCM-41 and SBA-15 for carbon dioxide capture. Microporous and Mesoporous Materials, 2020, 294, 109916.	4.4	42
4	Experimental solubility and thermodynamic modeling of CO2 in four new imidazolium and pyridinium-based ionic liquids. Fluid Phase Equilibria, 2016, 419, 67-74.	2.5	41
5	Markedly improved CO2 uptake using imidazolium-based ionic liquids confined into HKUST-1 frameworks. Microporous and Mesoporous Materials, 2019, 284, 98-110.	4.4	39
6	Recent Advances in Supported Metal Catalysts for Syngas Production from Methane. ChemEngineering, 2018, 2, 9.	2.4	38
7	Development of in situ polymerized amines into mesoporous silica for direct air CO2 capture. Chemical Engineering Journal, 2022, 447, 137465.	12.7	33
8	Investigation of CO2 capture using acetate-based ionic liquids incorporated into exceptionally porous metal–organic frameworks. Adsorption, 2019, 25, 675-692.	3.0	24
9	Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons. Renewable and Sustainable Energy Reviews, 2020, 131, 110024.	16.4	23
10	Review of Recent Developments in CO2 Capture Using Solid Materials: Metal Organic Frameworks (MOFs). , 0, , .		17
11	Evaluation of supported multi-functionalized amino acid ionic liquid-based sorbents for low temperature CO2 capture. Fuel, 2022, 310, 122284.	6.4	16
12	Thermodynamic Analysis of Autothermal Reforming of Synthetic Crude Glycerol (SCG) for Hydrogen Production. ChemEngineering, 2017, 1, 4.	2.4	15
13	Recent progress in the development of synthetic oxygen carriers for chemical looping combustion applications. Catalysis Today, 2023, 407, 21-51.	4.4	14
14	CuO/ZrO2 modified by WO3 oxygen carriers for chemical looping with oxygen uncoupling. Fuel, 2022, 310, 122288.	6.4	10
15	The effects of WO3 addition to NiO/ZrO2 oxygen carriers for chemical looping combustion of methane. Journal of Environmental Chemical Engineering, 2022, 10, 106945.	6.7	8
16	Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling. , 2017, , 1-76.		2