
Alexis Pérez Fargallo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/991454/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Domestic hot water consumption prediction models suited for dwellings in central-southern parts of Chile. Journal of Building Engineering, 2022, 49, 104024.	1.6	7
2	Impact of Urban Re-Densification on Indoor Lighting Demand and Energy Poverty on the Equator, in the City of Quito. Sustainability, 2022, 14, 3783.	1.6	1
3	Influence of the type of solar protection on thermal and light performance in classrooms. Energy Reports, 2022, 8, 5329-5340.	2.5	3
4	Prediction of Fuel Poverty Potential Risk Index Using Six Regression Algorithms: A Case-Study of Chilean Social Dwellings. Sustainability, 2021, 13, 2426.	1.6	3
5	Feasibility of adaptive thermal comfort for energy savings in cooling and heating: A study on Europe and the Mediterranean basin. Urban Climate, 2021, 36, 100807.	2.4	12
6	Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?. Energy and Buildings, 2020, 211, 109761.	3.1	68
7	Optimization of energy saving with adaptive setpoint temperatures by calculating the prevailing mean outdoor air temperature. Building and Environment, 2020, 170, 106612.	3.0	28
8	Energy saving potential in current and future world built environments based on the adaptive comfort approach. Journal of Cleaner Production, 2020, 249, 119306.	4.6	32
9	Effect on the Thermal Properties of Mortar Blocks by Using Recycled Glass and Its Application for Social Dwellings. Energies, 2020, 13, 5702.	1.6	2
10	Energy poverty risk mapping methodology considering the user's thermal adaptability: The case of Chile. Energy for Sustainable Development, 2020, 58, 63-77.	2.0	29
11	Energy poverty analyzed considering the adaptive comfort of people living in social housing in the central-south of Chile. Energy and Buildings, 2020, 223, 110081.	3.1	17
12	Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay. Sustainability, 2020, 12, 4636.	1.6	5
13	Influence of future climate changes scenarios on the feasibility of the adaptive comfort model in Japan. Sustainable Cities and Society, 2020, 61, 102303.	5.1	19
14	Towards the implementation of periodic thermal transmittance in Spanish building energy regulation. Journal of Building Engineering, 2020, 31, 101402.	1.6	8
15	Influence of climate on the creation of multilayer perceptrons to analyse the risk of fuel poverty. Energy and Buildings, 2019, 198, 38-60.	3.1	19
16	Towards the quantification of energy demand and consumption through the adaptive comfort approach in mixed mode office buildings considering climate change. Energy and Buildings, 2019, 187, 173-185.	3.1	75
17	Influence of Granulometry on Thermal and Mechanical Properties of Cement Mortars Containing Expanded Perlite as a Lightweight Aggregate. Materials, 2019, 12, 4013.	1.3	14
18	The Scales Project, a cross-national dataset on the interpretation of thermal perception scales. Scientific Data, 2019, 6, 289.	2.4	19

Alexis Pérez Fargallo

#	Article	IF	CITATIONS
19	Comparing Mechanical Behavior of API H-Class Cement Reinforced with Carbon, Mineral or Polypropylene Fiber Additions. Arabian Journal for Science and Engineering, 2019, 44, 6119-6125.	1.7	2
20	Influencia de la incorporación de vidrio triturado en las propiedades y el comportamiento a alta temperatura de morteros de cemento. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2018, 57, 257-265.	0.9	10
21	Fuel Poverty Potential Risk Index in the context of climate change in Chile. Energy Policy, 2018, 113, 157-170.	4.2	40
22	Energy Demand Analysis. SpringerBriefs in Energy, 2018, , 31-46.	0.2	0
23	Linguistic descriptions of thermal comfort data for buildings: Definition, implementation and evaluation. Building Simulation, 2018, 11, 1095-1108.	3.0	1
24	Influence of Adaptive Comfort Models in Execution Cost Improvements for Housing Thermal Environment in ConcepciÃ ³ n, Chile. Sustainability, 2018, 10, 2368.	1.6	1
25	Development of a new adaptive comfort model for low income housing in the central-south of chile. Energy and Buildings, 2018, 178, 94-106.	3.1	64
26	Artificial neural networks and linear regression prediction models for social housing allocation: Fuel Poverty Potential Risk Index. Energy, 2018, 164, 627-641.	4.5	27
27	Energy Optimization and Prediction in Office Buildings. SpringerBriefs in Energy, 2018, , .	0.2	0
28	Influence of Adaptive Comfort Models on Energy Improvement for Housing in Cold Areas. Sustainability, 2018, 10, 859.	1.6	8
29	Research Method. SpringerBriefs in Energy, 2018, , 13-30.	0.2	0
30	Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO 2 emissions. Energy, 2017, 118, 24-36.	4.5	113
31	Application of adaptive comfort behaviors in Chilean social housing standards under the influence of climate change. Building Simulation, 2017, 10, 933-947.	3.0	29
32	Development policy in social housing allocation: Fuel poverty potential risk index. Indoor and Built Environment, 2017, 26, 980-998.	1.5	25
33	Study on Envelope in Office Buildings Under the Influence of Climate Change in Santiago, Chile. , 2017, , 393-401.		Ο
34	Optimization of annual energy demand in office buildings under the influence of climate change in Chile. Energy, 2016, 114, 569-585.	4.5	51
35	Multivariable regression analysis to assess energy consumption and CO2 emissions in the early stages of offices design in Chile. Energy and Buildings, 2016, 133, 738-753.	3.1	21
36	Comparativa de resultados de rehabilitación energética para viviendas en función del grado de mejora. Informes De La Construccion, 2016, 68, e134.	0.1	6

#	Article	IF	CITATIONS
37	Comparison of Energy-Saving Restoration Costs Based on Spain's Initial Constraints [Single-Family Zone B4]. Revista De La Construccion, 2015, 14, 44-50.	0.5	3