
Marco Feligioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/991081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Pharmacological Protective Role for Safranal in an Animal Model of Huntington's Disease. Neurochemical Research, 2021, 46, 1372-1379.	1.6	14
2	SUMOylation Regulates TDP-43 Splicing Activity and Nucleocytoplasmic Distribution. Molecular Neurobiology, 2021, 58, 5682-5702.	1.9	19
3	Effect of lobeglitazone on motor function in rat model of Parkinson's disease with diabetes co-morbidity. Brain Research Bulletin, 2021, 173, 184-192.	1.4	6
4	Retinal ganglion cell loss in an ex vivo mouse model of optic nerve cut is prevented by curcumin treatment. Cell Death Discovery, 2021, 7, 394.	2.0	7
5	Obstacles against the Marketing of Curcumin as a Drug. International Journal of Molecular Sciences, 2020, 21, 6619.	1.8	62
6	The pivotal role of SUMO-1-JNK-Tau axis in an in vitro model of oxidative stress counteracted by the protective effect of curcumin. Biochemical Pharmacology, 2020, 178, 114066.	2.0	11
7	Considerations around the SARS-CoV-2 Spike Protein with Particular Attention to COVID-19 Brain Infection and Neurological Symptoms. ACS Chemical Neuroscience, 2020, 11, 2361-2369.	1.7	75
8	The selective disruption of presynaptic JNK2/STX1a interaction reduces NMDA receptor-dependent glutamate release. Scientific Reports, 2019, 9, 7146.	1.6	10
9	Free d-aspartate triggers NMDA receptor-dependent cell death in primary cortical neurons and perturbs JNK activation, Tau phosphorylation, and protein SUMOylation in the cerebral cortex of mice lacking d-aspartate oxidase activity. Experimental Neurology, 2019, 317, 51-65.	2.0	24
10	Targeting SUMO-1ylation Contrasts Synaptic Dysfunction in a Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 6609-6623.	1.9	26
11	Presynaptic c-Jun N-terminal Kinase 2 regulates NMDA receptor-dependent glutamate release. Scientific Reports, 2015, 5, 9035.	1.6	41
12	SUMO modulation of protein aggregation and degradation. AIMS Molecular Science, 2015, 2, 382-410.	0.3	11
13	Age-related changes of protein SUMOylation balance in the AβPP Tg2576 mouse model of Alzheimer's disease. Frontiers in Pharmacology, 2014, 5, 63.	1.6	42
14	SUMO: a (Oxidative) Stressed Protein. NeuroMolecular Medicine, 2013, 15, 707-719.	1.8	55
15	SUMOylation in Neuroplasticity and Neurological Disorders. NeuroMolecular Medicine, 2013, 15, 637-638.	1.8	4
16	InÂvitro exposure to nicotine induces endocytosis of presynaptic AMPA receptors modulating dopamine release in rat nucleus accumbens nerve terminals. Neuropharmacology, 2012, 63, 916-926.	2.0	37
17	c-Jun N-terminal Kinase Regulates Soluble Aβ Oligomers and Cognitive Impairment in AD Mouse Model. Journal of Biological Chemistry, 2011, 286, 43871-43880.	1.6	74
18	Crosstalk between JNK and SUMO Signaling Pathways: deSUMOylation Is Protective against H2O2-Induced Cell Injury. PLoS ONE, 2011, 6, e28185.	1.1	50

Marco Feligioni

#	Article	IF	CITATIONS
19	Protein SUMOylation modulates calcium influx and glutamate release from presynaptic terminals. European Journal of Neuroscience, 2009, 29, 1348-1356.	1.2	60
20	Trafficking of presynaptic AMPA receptors mediating neurotransmitter release: Neuronal selectivity and relationships with sensitivity to cyclothiazide. Neuropharmacology, 2006, 50, 286-296.	2.0	36
21	Ultrastructural localisation and differential agonist-induced regulation of AMPA and kainate receptors present at the presynaptic active zone and postsynaptic density. Journal of Neurochemistry, 2006, 99, 549-560.	2.1	43
22	Extracellular protons differentially potentiate the responses of native AMPA receptor subtypes regulating neurotransmitter release. British Journal of Pharmacology, 2005, 144, 293-299.	2.7	20