
Grigoriy M Fedorenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9909472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment, 2018, 645, 1103-1113.	8.0	129
2	Protein Profile and Morphological Alterations in Penumbra after Focal Photothrombotic Infarction in the Rat Cerebral Cortex. Molecular Neurobiology, 2017, 54, 4172-4188.	4.0	45
3	Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry and Health, 2020, 42, 45-58.	3.4	41
4	Photodynamic Inactivation of Isolated Crayfish Mechanoreceptor Neuron: Different Death Modes Under Different Photosensitizer Concentrations¶. Photochemistry and Photobiology, 2002, 76, 431-437.	2.5	30
5	The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environmental Geochemistry and Health, 2021, 43, 1673-1687.	3.4	27
6	Protection Effect of GDNF and Neurturin on Photosensitized Crayfish Neurons and Glial Cells. Journal of Molecular Neuroscience, 2013, 49, 480-490.	2.3	20
7	Method for hydrophytic plant sample preparation for light and electron microscopy (studies on) Tj ETQq1 1 0.78	4314 rgBT 1.6	/Qyerlock 1
8	Bioindication of soil pollution in the delta of the Don River and the coast of the Taganrog Bay with heavy metals based on anatomical, morphological and biogeochemical studies of macrophyte (Typha) Tj ETQq0 () Oargebt /O	venslock 10 T
9	The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley. Environmental Geochemistry and Health, 2021, 43, 1477-1489.	3.4	15
10	Photodynamic Inactivation of Isolated Crayfish Mechanoreceptor Neuron: Different Death Modes Under Different Photosensitizer Concentrations¶. Photochemistry and Photobiology, 2002, 76, 431.	2.5	12
11	CELLULAR STRUCTURES INVOLVED IN THE TRANSPORT PROCESSES AND NEUROGLIAL INTERACTIONS IN THE CRAYFISH STRETCH RECEPTOR. Journal of Integrative Neuroscience, 2009, 08, 433-440.	1.7	6
12	The paired neuroglial and interglial membranes in the crayfish stretch receptor and their local disorganization. Journal of Neuroscience Research, 2015, 93, 707-713.	2.9	6
13	Accumulation, translocation, and toxicity of arsenic in barley grown in contaminated soil. Plant and Soil, 2021, 467, 91-106.	3.7	6
14	Targeting of organelles into vacuoles and ultrastructure of flower petal epidermis of Petunia hybrida. Revista Brasileira De Botanica, 2016, 39, 327-336.	1.3	5
15	Adaptive potential of Typha laxmannii Lepech to a heavy metal contaminated site. Plant and Soil, 2021, 465, 273-287.	3.7	4