Daohao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9908000/publications.pdf

Version: 2024-02-01

414414 257450 2,643 32 24 32 citations h-index g-index papers 32 32 32 3782 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A Defect-Driven Metal-free Electrocatalyst for Oxygen Reduction in Acidic Electrolyte. CheM, 2018, 4, 2345-2356.	11.7	292
2	Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 8104-8108.	13.7	226
3	Three-dimensional Salphen-based Covalent–Organic Frameworks as Catalytic Antioxidants. Journal of the American Chemical Society, 2019, 141, 2920-2924.	13.7	193
4	Highly stable supercapacitors with MOF-derived Co ₉ S ₈ /carbon electrodes for high rate electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 12453-12461.	10.3	180
5	Proliferaâ€Greenâ€Tide as Sustainable Source for Carbonaceous Aerogels with Hierarchical Pore to Achieve Multiple Energy Storage. Advanced Functional Materials, 2016, 26, 8487-8495.	14.9	169
6	Doubleâ€Helix Structure in Carrageenan–Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodiumâ€Ion Storage. Angewandte Chemie - International Edition, 2016, 55, 15925-15928.	13.8	157
7	Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. Journal of the American Chemical Society, 2019, 141, 13324-13329.	13.7	146
8	Exfoliated Mesoporous 2D Covalent Organic Frameworks for Highâ€Rate Electrochemical Doubleâ€Layer Capacitors. Advanced Materials, 2020, 32, e1907289.	21.0	136
9	Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage. ACS Nano, 2017, 11, 6186-6193.	14.6	127
10	Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 8247-8254.	10.3	114
11	Highly Porous FeS/Carbon Fibers Derived from Fe-Carrageenan Biomass: High-capacity and Durable Anodes for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17175-17182.	8.0	114
12	Direct Interfacial Growth of MnO ₂ Nanostructure on Hierarchically Porous Carbon for High-Performance Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 633-641.	6.7	113
13	Boosting hydrogen evolution <i>via</i> optimized hydrogen adsorption at the interface of CoP ₃ and Ni ₂ P. Journal of Materials Chemistry A, 2018, 6, 5560-5565.	10.3	107
14	Gradientâ€Concentration Design of Stable Core–Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis. Advanced Materials, 2020, 32, e2003493.	21.0	79
15	Heterocyclization Strategy for Construction of Linear Conjugated Polymers: Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 11369-11373.	13.8	67
16	Boosting Sodium-Ion Storage by Encapsulating NiS (CoS) Hollow Nanoparticles into Carbonaceous Fibers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40531-40539.	8.0	62
17	Controlled Asymmetric Charge Distribution of Active Centers in Conjugated Polymers for Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 26483-26488.	13.8	59
18	Hydrogen Bond Interpenetrated Agarose/PVA Network: A Highly Ionic Conductive and Flame-Retardant Gel Polymer Electrolyte. ACS Applied Materials & (2021, 13, 9856-9864).	8.0	53

#	Article	IF	CITATIONS
19	Seaweed Biomass-Derived Flame-Retardant Gel Electrolyte Membrane for Safe Solid-State Supercapacitors. Macromolecules, 2018, 51, 9360-9367.	4.8	37
20	Biomass as a Template Leads to CdS@Carbon Aerogels for Efficient Photocatalytic Hydrogen Evolution and Stable Photoelectrochemical Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 14911-14918.	6.7	35
21	In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	30
22	Bamboo-inspired cell-scale assembly for energy device applications. Npj Flexible Electronics, 2022, 6, .	10.7	29
23	Doubleâ€Helix Structure in Carrageenan–Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodiumâ€Ion Storage. Angewandte Chemie, 2016, 128, 16157-16160.	2.0	26
24	Hierarchically Porous and Defective Carbon Fiber Cathode for Efficient Zn-Air Batteries and Microbial Fuel Cells. Advanced Fiber Materials, 2022, 4, 795-806.	16.1	26
25	Bimetallic ZIF derived Co nanoparticle anchored N-doped porous carbons for an efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2020, 7, 946-952.	6.0	15
26	Heterocyclization Strategy for Construction of Linear Conjugated Polymers: Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction. Angewandte Chemie, 2019, 131, 11491-11495.	2.0	14
27	Cation vacancy driven efficient CoFe-LDH-based electrocatalysts for water splitting and Zn–air batteries. Materials Advances, 2021, 2, 7932-7938.	5.4	13
28	Electrostatic Interaction in Amino Protonated Chitosan–Metal Complex Anion Hydrogels: A Simple Approach to Porous Metal Carbides/N-Doped Carbon Aerogels for Energy Conversion. ACS Applied Materials & Diterfaces, 2022, 14, 22151-22160.	8.0	9
29	Optimizing the oxygen reduction catalytic activity of a bipyridine-based polymer through tuning the molecular weight. Journal of Materials Chemistry A, 2021, 9, 3322-3327.	10.3	6
30	Crystal Phase-Related Toxicity of One-Dimensional Titanium Dioxide Nanomaterials on Kidney Cells. ACS Applied Bio Materials, 2021, 4, 3499-3506.	4.6	5
31	Interfacial enhancement of Oâ^— protonation on Fe2N/Fe3C nanoparticles to boost oxygen reduction reaction and the fuel cell in acidic electrolyte. Materials Today Energy, 2021, 21, 100834.	4.7	3
32	Pt-decorated porously defective carbon aerogels derived from polysaccharide for oxygen reduction in acidic and alkaline electrolytes. Journal of Porous Materials, 2022, 29, 1061-1070.	2.6	1