
Helmut Keul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/990614/publications.pdf Version: 2024-02-01

HEIMIIT KEIII

#	Article	IF	CITATIONS
1	Thiolactone-Functional Pullulan for <i>In Situ</i> Forming Biogels. Biomacromolecules, 2021, 22, 4262-4273.	5.4	5
2	Formaldehydeâ€free curing of cotton cellulose fabrics in anhydrous media. Journal of Applied Polymer Science, 2020, 137, 48371.	2.6	1
3	Light-induced cross-linking and post-cross-linking modification of polyglycidol. Chemical Communications, 2018, 54, 1647-1650.	4.1	10
4	Highly Swellable Hydrogels from Waterborne Poly(Vinylamineâ€≺i>coâ€Acetamide). Macromolecular Chemistry and Physics, 2018, 219, 1800399.	2.2	9
5	Synthesis, Characterization, and Antimicrobial Properties of Peptides Mimicking Copolymers of Maleic Anhydride and 4-Methyl-1-pentene. International Journal of Molecular Sciences, 2018, 19, 2617.	4.1	11
6	Novel Antibacterial Polyglycidols: Relationship between Structure and Properties. Polymers, 2018, 10, 96.	4.5	7
7	Solubility, Emulsification and Surface Properties of Maleic Anhydride, Perfluorooctyl and Alkyl Meth-Acrylate Terpolymers. Polymers, 2018, 10, 37.	4.5	3
8	Comparison of Candida antarctica Lipase B Variants for Conversion of ε-Caprolactone in Aqueous Medium—Part 2. Polymers, 2018, 10, 524.	4.5	10
9	Aliphatic Polyethers with Sulfate, Carboxylate, and Hydroxyl Side Groups—Do They Show Anticoagulant Properties?. Macromolecular Bioscience, 2017, 17, .	4.1	2
10	Protecting patches in colloidal synthesis of Au semishells. Chemical Communications, 2017, 53, 3898-3901.	4.1	5
11	One-Pot Synthesis of Amino Acid-Based Polyelectrolytes and Nanoparticle Synthesis. Biomacromolecules, 2017, 18, 159-168.	5.4	10
12	Homoserine Lactone as a Structural Key Element for the Synthesis of Multifunctional Polymers. Polymers, 2017, 9, 130.	4.5	11
13	Synthesis of Terpolymers with Homogeneous Composition by Free Radical Copolymerization of Maleic Anhydride, Perfluorooctyl and Butyl or Dodecyl Methacrylates: Application of the Continuous Flow Monomer Addition Technique. Polymers, 2017, 9, 610.	4.5	5
14	CaLB Catalyzed Conversion of ε-Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels. Polymers, 2016, 8, 372.	4.5	20
15	Telechelic Poly(methyl acrylate)s as Constituents for Multiblock Poly(urethane urea)s. Macromolecular Chemistry and Physics, 2016, 217, 72-84.	2.2	1
16	Functional PEG building blocks via copolymerization of ethylene carbonate and tert-butyl glycidyl ether. Polymer Chemistry, 2016, 7, 5050-5059.	3.9	4
17	Switching from Controlled Ring-Opening Polymerization (cROP) to Controlled Ring-Closing Depolymerization (cRCDP) by Adjusting the Reaction Parameters That Determine the Ceiling Temperature. Biomacromolecules, 2016, 17, 3995-4002.	5.4	62
18	Light-Controlled Radical Polymerization of Functional Methacrylates Prepared by Enzymatic Transacylation. Macromolecular Chemistry and Physics, 2016, 217, 9-23.	2.2	3

НЕІМИТ КЕЙІ

#	Article	IF	CITATIONS
19	An epoxy thiolactone on stage: four component reactions, synthesis of poly(thioether urethane)s and the respective hydrogels. Polymer Chemistry, 2016, 7, 2291-2298.	3.9	23
20	MALDIâ€TOF Analysis of Halogen Telechelic Poly(methyl methacrylate)s and Poly(methyl acrylate)s Prepared by Atom Transfer Radical Polymerization (ATRP) or Single Electron Transferâ€Living Radical Polymerization (SETâ€LRP). Macromolecular Chemistry and Physics, 2015, 216, 1791-1800.	2.2	15
21	Macromolecular Design via an Organocatalytic, Monomer-Specific and Temperature-Dependent "On/Off Switch― High Precision Synthesis of Polyester/Polycarbonate Multiblock Copolymers. Macromolecules, 2015, 48, 1703-1710.	4.8	47
22	Oneâ€Pot Synthesis of Multifunctional Polymers by Lightâ€Controlled Radical Polymerization and Enzymatic Catalysis with <i>Candida antarctica</i> Lipase B. Macromolecular Rapid Communications, 2015, 36, 2092-2096.	3.9	12
23	Straightforward synthesis of phosphate functionalized linear polyglycidol. European Polymer Journal, 2015, 69, 319-327.	5.4	5
24	Synthesis and characterization of polyamine-based cyclophosphazene hybrid microspheres. Journal of Polymer Science Part A, 2014, 52, 527-536.	2.3	41
25	Tailored Thiolâ€Functional Polyamides: Synthesis and Functionalization. Macromolecular Rapid Communications, 2014, 35, 1986-1993.	3.9	22
26	Synthesis of α,ï‰-isocyanate telechelic polymethacrylate soft segments with activated ester side functionalities and their use for polyurethane synthesis. Polymer International, 2014, 63, 114-126.	3.1	7
27	Synthesis of Azetidinium-Functionalized Polymers Using a Piperazine Based Coupler. Macromolecules, 2013, 46, 638-646.	4.8	19
28	Preparation of waterborne functional polymers using a bifunctional coupler. Green Chemistry, 2013, 15, 3135.	9.0	14
29	Poly(amide urethane)s with functional/reactive side groups based on a bis-cyclic bio-based monomer/coupling agent. European Polymer Journal, 2013, 49, 853-864.	5.4	23
30	Formation of linear and cyclic polyoxetanes in the cationic ringâ€opening polymerization of 3â€allyloxymethylâ€3â€ethyloxetane and subsequent postpolymerization modification of poly(3â€allyloxymethylâ€3â€ethyloxetane). Journal of Polymer Science Part A, 2013, 51, 1243-1254.	2.3	20
31	Phosphonoethylated Polyglycidols: A Platform for Tunable Enzymatic Grafting Density. Macromolecules, 2013, 46, 3708-3718.	4.8	6
32	Surfactant-Free Synthesis of Polystyrene Nanoparticles Using Oligoglycidol Macromonomers. Macromolecules, 2012, 45, 1230-1240.	4.8	25
33	Copolymers of 2-hydroxyethylacrylate and 2-methoxyethyl acrylate by nitroxide mediated polymerization: kinetics, SEC-ESI-MS analysis and thermoresponsive properties. Polymer Chemistry, 2012, 3, 335-342.	3.9	37
34	Hydroxylâ€functional polyurethanes and polyesters: synthesis, properties and potential biomedical application. Polymer International, 2012, 61, 1048-1060.	3.1	57
35	Synthesis of α,ωâ€Isocyanate–Telechelic Poly(methyl methacrylate). Macromolecular Chemistry and Physics, 2012, 213, 1465-1474.	2.2	8
36	Functional Polymers Bearing Reactive Azetidinium Groups: Synthesis and Characterization. Macromolecular Chemistry and Physics, 2012, 213, 500-512.	2.2	21

Негмит Кепг

#	Article	IF	CITATIONS
37	Post-polymerization functionalization of linear polyglycidol with diethyl vinylphosphonate. Chemical Communications, 2011, 47, 8148.	4.1	25
38	Synthesis and Characterization of Polyhydroxyurethanes Prepared from Difunctional Six-Membered Ring Carbonates. Designed Monomers and Polymers, 2011, 14, 593-608.	1.6	7
39	Synthesis of reversible and irreversible cross-linked (M)PEG-(meth)acrylate based functional copolymers. Polymer Chemistry, 2011, 2, 1803.	3.9	8
40	Synthesis and characterization of biodegradable polyester/polyether resins via Michael-type addition. Polymer Chemistry, 2011, 2, 2273.	3.9	11
41	Tailor-made polyesters based on pentadecalactone via enzymatic catalysis. Green Chemistry, 2011, 13, 889.	9.0	25
42	Poly(glycidyl amine) and Copolymers with Glycidol and Glycidyl Amine Repeating Units: Synthesis and Characterization. Macromolecules, 2011, 44, 4082-4091.	4.8	46
43	Synthesis of Reactive Amphiphilic Copolymers Based on Oligoglycidol Macromonomers. Macromolecular Chemistry and Physics, 2011, 212, 1791-1801.	2.2	12
44	Synthesis and Characterisation of Poly[oligo(<i>ε</i> â€caprolactone) <scp>L</scp> â€malateâ€ <i>graft</i> â€poly(<scp>L</scp> â€lactide)]. Macromolecular Chemistry and Physics, 2010, 211, 752-760.	2.2	9
45	Synthesis, Characterization, and Selectivity of Bifunctional Couplers. Macromolecular Chemistry and Physics, 2010, 211, 2366-2381.	2.2	26
46	Free radical and nitroxide mediated polymerization of hydroxy–functional acrylates prepared via lipase–catalyzed transacylation reactions. Journal of Polymer Science Part A, 2010, 48, 2610-2621.	2.3	17
47	Multifunctional Polyesters for Bioartificial Vascular Prostheses. Macromolecular Symposia, 2010, 296, 453-456.	0.7	0
48	Hydroxy Functional Acrylates: Enzymatic Synthesis and Free Radical Polymerization. Macromolecular Symposia, 2010, 296, 49-52.	0.7	1
49	Thermoresponsive polyacrylates obtained via a cascade of enzymatic transacylation and FRP or NMP. Polymer Chemistry, 2010, 1, 878.	3.9	24
50	Synthesis, characterization and in vitro degradation of 3D-microstructured poly(ε-caprolactone) resins. Polymer Chemistry, 2010, 1, 1215.	3.9	22
51	Graft Copolymers Based on Functional Polyesters. Macromolecular Symposia, 2010, 296, 366-370.	0.7	4
52	Star Shaped Polyglycidols End Capped with Vinyl sulfonate Groups and Conjugation Reaction with Dodecylamine. Macromolecular Symposia, 2010, 296, 1-4.	0.7	4
53	Highly Functional Poly(meth)acrylates via Cascade Reaction. Macromolecular Chemistry and Physics, 2009, 210, 123-139.	2.2	6
54	Carbonate Couplers and Functional Cyclic Carbonates from Amino Acids and Glucosamine. Macromolecular Chemistry and Physics, 2009, 210, 242-255.	2.2	22

Негмит Кепг

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Amphiphilic Polyethers Based on Tetrahydrofuran and Glycidol: Antibacterial Assessment. Macromolecular Chemistry and Physics, 2009, 210, 614-630.	2.2	9
56	Novel Biodegradable Heterografted Polymer Brushes Prepared <i>via</i> a Chemoenzymatic Approach. Macromolecular Chemistry and Physics, 2009, 210, 736-746.	2.2	16
57	Synthesis of Chitosan Surfactants. Macromolecular Chemistry and Physics, 2009, 210, 752-768.	2.2	6
58	Synthesis of highâ€molecularâ€weight linear methacrylate copolymers with spiropyran side groups: Conformational changes of single molecules in solution and on surfaces. Journal of Polymer Science Part A, 2009, 47, 1274-1283.	2.3	18
59	Synthesis and degradation of biomedical materials based on linear and star shaped polyglycidols. Journal of Polymer Science Part A, 2009, 47, 3209-3231.	2.3	84
60	Synthesis, Characterization, and Visualization of High-Molecular-Weight Poly(glycidol-graft-ïµ-caprolactone) Starlike Polymers. Macromolecules, 2009, 42, 1031-1036.	4.8	13
61	2D―and 3Dâ€microstructured biodegradable polyester resins. Journal of Polymer Science Part A, 2008, 46, 6789-6800.	2.3	22
62	Synthesis and Association Behaviour of Linear Block Copolymers with Different Microstructures but the Same Composition. Macromolecular Chemistry and Physics, 2008, 209, 1859-1871.	2.2	25
63	Multifunctional Polymethacrylates Obtained Via ATRP of Functional and Reactive Monomers Followed by Polymer Analogous Reaction with Functional Amines. Macromolecular Chemistry and Physics, 2008, 209, 2012-2025.	2.2	9
64	<i>^î³</i> â€Acyloxyâ€ <i>ε</i> â€Caprolactones: Synthesis, Ringâ€Opening Polymerization vs. Rearrangement by Means of Chemical and Enzymatic Catalysis. Macromolecular Symposia, 2008, 272, 28-38.	0.7	15
65	Synthesis and polymerization of first-generation dendritic methacrylate macromonomers. Journal of Polymer Science Part A, 2007, 45, 614-628.	2.3	6
66	Ringâ€øpening polymerization and depolymerization in respective polymers. Macromolecular Symposia, 1995, 98, 825-834.	0.7	2
67	Ring-Opening Polymerization and ring-closing depolymerization. Advanced Materials, 1994, 6, 21-36.	21.0	53