Stephen E Strelkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/990578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Identification of Two New Races of Pyrenophora tritici-repentis from the Host Center of Diversity Confirms a One-to-One Relationship in Tan Spot of Wheat. Phytopathology, 2003, 93, 391-396.	1.1	188
2	<i>Plasmodiophora brassicae</i> : a review of an emerging pathogen of the Canadian canola (<i>Brassica napus</i>) crop. Molecular Plant Pathology, 2012, 13, 105-113.	2.0	175
3	Clubroot of cruciferous crops – new perspectives on an old diseaseâ€. Canadian Journal of Plant Pathology, 2010, 32, 43-57.	0.8	139
4	Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta, Canada. European Journal of Plant Pathology, 2016, 145, 517-529.	0.8	132
5	Virulence and pathotype classification of <i>Plasmodiophora brassicae</i> populations collected from clubroot resistant canola (<i>Brassica napus</i>) in Canada. Canadian Journal of Plant Pathology, 2018, 40, 284-298.	0.8	125
6	Identification of clubroot of crucifers on canola (Brassica napus) in Alberta. Canadian Journal of Plant Pathology, 2005, 27, 143-144.	0.8	121
7	Isolation and Variation in Virulence of Single-Spore Isolates of Plasmodiophora brassicae from Canada. Plant Disease, 2008, 92, 456-462.	0.7	114
8	The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genomics, 2016, 17, 272.	1.2	107
9	Crop rotation, cultivar resistance, and fungicides/biofungicides for managing clubroot (<i>Plasmodiophora brassicae</i>) on canola. Canadian Journal of Plant Pathology, 2014, 36, 99-112.	0.8	102
10	Characterization of a Host-Specific Protein Toxin (Ptr ToxB) from Pyrenophora tritici-repentis. Molecular Plant-Microbe Interactions, 1999, 12, 728-732.	1.4	101
11	Clubroot in the Canadian canola crop: 10 years into the outbreak. Canadian Journal of Plant Pathology, 2014, 36, 27-36.	0.8	99
12	Molecular Detection of Plasmodiophora brassicae, Causal Agent of Clubroot of Crucifers, in Plant and Soil. Plant Disease, 2007, 91, 80-87.	0.7	94
13	Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathology, 2011, 60, 566-574.	1.2	93
14	Pathotype Classification of Plasmodiophora brassicae and its Occurrence in Brassica napus in Alberta, Canada. Journal of Phytopathology, 2007, 155, 706-712.	0.5	90
15	Genotyping-by-sequencing reveals three QTL for clubroot resistance to six pathotypes of Plasmodiophora brassicae in Brassica rapa. Scientific Reports, 2017, 7, 4516.	1.6	90
16	Virulence and spread of <i>Plasmodiophora brassicae</i> [clubroot] in Alberta, Canada. Canadian Journal of Plant Pathology, 2009, 31, 321-329.	0.8	88
17	Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Science, 2008, 174, 97-115.	1.7	82
18	Management of clubroot (<i>Plasmodiophora brassicae</i>) on canola (<i>Brassica napus</i>) in western Canada. Canadian Journal of Plant Pathology, 2014, 36, 49-65.	0.8	81

#	Article	IF	CITATIONS
19	Minireview/ Minisynthèse The wheat/Pyrenophora tritici-repentisinteraction: progress towards an understanding of tan spot diseaseâ€. Canadian Journal of Plant Pathology, 2010, 32, 4-10.	0.8	79
20	Comparative virulence of chlorosis-inducing races of <i>Pyrenophora tritici-repentis</i> . Canadian Journal of Plant Pathology, 2002, 24, 29-35.	0.8	77
21	Molecular characterization of a serine protease Pro1 from <i>Plasmodiophora brassicae</i> that stimulates resting spore germination. Molecular Plant Pathology, 2010, 11, 503-512.	2.0	75
22	Diseases of <i>Camelina sativa</i> (false flax). Canadian Journal of Plant Pathology, 2009, 31, 375-386.	0.8	74
23	Influence of cultivar resistance and inoculum density on root hair infection of canola (<i>Brassica) Tj ETQq1 1 0.</i>	784314 rg 1.2	gBT_/Overlock
24	Detection and Measurement of Plasmodiophora brassicae. Journal of Plant Growth Regulation, 2009, 28, 282-288.	2.8	66
25	First report of Fusarium proliferatum causing root rot in soybean (Glycine max L.) in Canada. Crop Protection, 2015, 67, 52-58.	1.0	66
26	Proteome-level changes in two Brassica napus lines exhibiting differential responses to the fungal pathogen Alternaria brassicae. Plant Science, 2007, 172, 95-110.	1.7	64
27	Direct evidence of surface infestation of seeds and tubers by <i>Plasmodiophora brassicae</i> and quantification of spore loads. Plant Pathology, 2011, 60, 811-819.	1.2	63
28	Screening of <i>Brassica</i> germplasm for resistance to <i>Plasmodiophora brassicae</i> pathotypes prevalent in Canada for broadening diversity in clubroot resistance. Canadian Journal of Plant Science, 2012, 92, 501-515.	0.3	63
29	Seedling age and inoculum density affect clubroot severity and seed yield in canola. Canadian Journal of Plant Science, 2011, 91, 183-190.	0.3	60
30	Proteome Changes in Leaves of Brassica napus L. as a Result of Sclerotinia sclerotiorum Challenge. Journal of Agricultural and Food Chemistry, 2008, 56, 1963-1976.	2.4	56
31	Adaptation to <i>Brassica</i> Host Genotypes by a Single-Spore Isolate and Population of <i>Plasmodiophora brassicae</i> (Clubroot). Plant Disease, 2012, 96, 833-838.	0.7	56
32	A >2-year crop rotation reduces resting spores of Plasmodiophora brassicae in soil and the impact of clubroot on canola. European Journal of Agronomy, 2015, 70, 78-84.	1.9	55
33	Genetic variation in <i>Fusarium avenaceum</i> causing root rot on field pea. Plant Pathology, 2010, 59, 845-852.	1.2	51
34	Race structure of <i>Pyrenophora triciti-repentis</i> (tan spot of wheat) in Alberta, Canada. Canadian Journal of Plant Pathology, 2013, 35, 256-268.	0.8	50
35	Metabolic Changes in Roots of the Oilseed Canola Infected with the Biotroph Plasmodiophora brassicae: Phytoalexins and Phytoanticipins. Journal of Agricultural and Food Chemistry, 2008, 56, 9949-9961.	2.4	49
36	Assessment of bait crops to reduce inoculum of clubroot (Plasmodiophora brassicae) of canola. Canadian Journal of Plant Science, 2011, 91, 545-551.	0.3	48

#	Article	IF	CITATIONS
37	Oxalic acidâ€mediated stress responses in <i>Brassica napus</i> L Proteomics, 2009, 9, 3156-3173.	1.3	47
38	Studies into primary and secondary infection processes by <i>Plasmodiophora brassicae</i> on canola. Plant Pathology, 2013, 62, 177-183.	1.2	46
39	Sources of resistance to <i>Plasmodiophora brassicae</i> (clubroot) pathotypes virulent on canola. Canadian Journal of Plant Pathology, 2014, 36, 89-99.	0.8	45
40	Mapping of clubroot (<i>Plasmodiophora brassicae</i>) resistance in canola (<i>Brassica napus</i>). Plant Pathology, 2016, 65, 435-440.	1.2	45
41	Blackleg (Leptosphaeria maculans) Severity and Yield Loss in Canola in Alberta, Canada. Plants, 2016, 5, 31.	1.6	43
42	Identification of microsatellite markers linked to quantitative trait loci controlling resistance to Fusarium root rot in field pea. Canadian Journal of Plant Science, 2011, 91, 199-204.	0.3	42
43	Response of Brassica napus to Plasmodiophora brassicae Involves Salicylic Acid-Mediated Immunity: An RNA-Seq-Based Study. Frontiers in Plant Science, 2020, 11, 1025.	1.7	42
44	Sensitivity of field populations of <i>Ascochyta rabiei</i> to chlorothalonil, mancozeb and pyraclostrobin fungicides and effect of strobilurin fungicides on the progress of ascochyta blight of chickpea. Canadian Journal of Plant Science, 2007, 87, 937-944.	0.3	41
45	An inexpensive method for extraction of genomic DNA from fungal mycelia. Canadian Journal of Plant Pathology, 2010, 32, 396-401.	0.8	41
46	Infection of canola by secondary zoospores of Plasmodiophora brassicae produced on a nonhost. European Journal of Plant Pathology, 2012, 132, 309-315.	0.8	41
47	Effects of root exudates and pH on Plasmodiophora brassicae resting spore germination and infection of canola (Brassica napus L.) root hairs. Crop Protection, 2013, 48, 16-23.	1.0	41
48	Quantification of <i>ToxB</i> gene expression and formation of appressoria by isolates of <i>Pyrenophora triticiâ€repentis </i> differing in pathogenicity. Plant Pathology, 2008, 57, 623-633.	1.2	40
49	Analysis of genome-wide variants through bulked segregant RNA sequencing reveals a major gene for resistance to Plasmodiophora brassicae in Brassica oleracea. Scientific Reports, 2018, 8, 17657.	1.6	40
50	Assessment of the impact of resistant and susceptible canola on <i>Plasmodiophora brassicae</i> inoculum potential. Plant Pathology, 2012, 61, 945-952.	1.2	37
51	Effect of susceptible and resistant canola plants on <i>Plasmodiophora brassicae</i> resting spore populations in the soil. Plant Pathology, 2013, 62, 404-412.	1.2	37
52	Spread ofPlasmodiophora brassicaeon canola in Canada, 2003–2014: Old pathogen, new home. Canadian Journal of Plant Pathology, 2015, 37, 403-413.	0.8	37
53	Simple sequence repeats and diversity of globally distributed populations of <i>Pyrenophora tritici-repentis</i> . Canadian Journal of Plant Pathology, 2011, 33, 389-399.	0.8	36
54	Genetic Resistance to Mycosphaerella pinodes in 558 Field Pea Accessions. Crop Science, 2006, 46, 2409-2414.	0.8	35

#	Article	IF	CITATIONS
55	Assessment of gene expression profiles in primary and secondary zoospores of Plasmodiophora brassicae by dot blot and real-time PCR. Microbiological Research, 2013, 168, 518-524.	2.5	35
56	Clubroot (<i>Plasmodiophora brassicae</i>) on canola and other Brassica species – disease development, epidemiology and management. Canadian Journal of Plant Pathology, 2014, 36, 1-4.	0.8	35
57	Clubroot disease in Latin America: distribution and management strategies. Plant Pathology, 2019, 68, 827-833.	1.2	35
58	Disruption of a gene encoding a hypothetical secreted protein from <i>Sclerotinia sclerotiorum</i> reduces its virulence on canola (<i>Brassica napus</i>). Canadian Journal of Plant Pathology, 2013, 35, 46-55.	0.8	34
59	The LmSNF1 Gene Is Required for Pathogenicity in the Canola Blackleg Pathogen Leptosphaeria maculans. PLoS ONE, 2014, 9, e92503.	1.1	34
60	Resistance to <i>Plasmodiophora brassicae</i> in <i>Brassica rapa</i> and <i>Brassica juncea</i> genotypes From China. Plant Disease, 2015, 99, 776-779.	0.7	34
61	Aphanomyces euteiches: A Threat to Canadian Field Pea Production. Engineering, 2018, 4, 542-551.	3.2	34
62	A proteomic evaluation of <i>Pyrenophora triticiâ€repentis</i> , causal agent of tan spot of wheat, reveals major differences between virulent and avirulent isolates. Proteomics, 2009, 9, 1177-1196.	1.3	33
63	Inhibition of photosynthesis and modification of the wheat leaf proteome by Ptr ToxB: A hostâ€specific toxin from the fungal pathogen <i>Pyrenophora triticiâ€repentis</i> . Proteomics, 2010, 10, 2911-2926.	1.3	33
64	Movement of <i>Plasmodiophora brassicae</i> resting spores in windblown dust. Canadian Journal of Plant Pathology, 2015, 37, 188-196.	0.8	33
65	Interaction of pH and temperature affect infection and symptom development of <i>Plasmodiophora brassicae</i> in canola. Canadian Journal of Plant Pathology, 2013, 35, 294-303.	0.8	32
66	Two Clubroot-Resistance Genes, Rcr3 and Rcr9wa, Mapped in Brassica rapa Using Bulk Segregant RNA Sequencing. International Journal of Molecular Sciences, 2020, 21, 5033.	1.8	32
67	Effect of host and nonâ€host crops on <i>Plasmodiophora brassicae</i> resting spore concentrations and clubroot of canola. Plant Pathology, 2015, 64, 1198-1206.	1.2	31
68	Effects of fungicide, seeding date and seedling age on clubroot severity, seedling emergence and yield of canola. Canadian Journal of Plant Science, 2012, 92, 1175-1186.	0.3	30
69	Potential loss of clubroot resistance genes from donor parent <i>Brassica rapa</i> subsp. <i>rapifera</i> (<scp>ECD</scp> 04) during doubled haploid production. Plant Pathology, 2018, 67, 892-901.	1.2	30
70	<i>Plasmodiophora brassicae</i> resting spore dynamics in clubroot resistant canola (<i>Brassica) Tj ETQq0 0 0</i>	rgBT_/Ove	erlogk 10 Tf 50
71	The Proteome of Liquid Sclerotial Exudates from <i>Sclerotinia sclerotiorum</i> . Journal of Proteome Research, 2010, 9, 3290-3298.	1.8	29

Pathotypes of <i>Plasmodiophora brassicae</i> collected from clubroot resistant canola (<i>Brassica) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 0.8 29 622-630.

#	Article	IF	CITATIONS
73	Virulence of <i>Pyrenophora teres</i> populations in western Canada. Canadian Journal of Plant Pathology, 2016, 38, 183-196.	0.8	28
74	Ectomycorrhizal community responses to intensive forest management: thinning alters impacts of fertilization. Plant and Soil, 2012, 360, 333-347.	1.8	27
75	A comparison of clubroot development and management on canola and Brassica vegetables. Canadian Journal of Plant Pathology, 2013, 35, 175-191.	0.8	27
76	The anthraquinone catenarin is phytotoxic and produced in leaves and kernels of wheat infected by Pyrenophora tritici-repentis. Physiological and Molecular Plant Pathology, 2008, 72, 87-95.	1.3	26
77	Influence of water activity and temperature on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. International Journal of Food Microbiology, 2009, 131, 251-255.	2.1	26
78	Clubroot resistance QTL are modulated by nitrogen input in Brassica napus. Theoretical and Applied Genetics, 2017, 130, 669-684.	1.8	26
79	Genetic diversity and aggressiveness of Fusarium species isolated from soybean in Alberta, Canada. Crop Protection, 2018, 105, 49-58.	1.0	26
80	Soil treatments and amendments for amelioration of clubroot of canola. Canadian Journal of Plant Science, 2011, 91, 999-1010.	0.3	25
81	Virulence of <i>Pyrenophora tritici-repentis</i> in the Southern Cone Region of South America. Canadian Journal of Plant Pathology, 2012, 34, 545-550.	0.8	25
82	Prevalence of mating type idiomorphs in <i>Pyrenophora teres</i> f. <i>teres</i> and <i>P. teres</i> f. <i>maculata</i> populations from the Canadian prairies. Canadian Journal of Plant Pathology, 2015, 37, 52-60.	0.8	25
83	RNAâ€mediated gene silencing of <i>ToxB</i> in <i>Pyrenophora triticiâ€repentis</i> . Molecular Plant Pathology, 2012, 13, 318-326.	2.0	24
84	Population Structure and Genomewide Association Analysis of Resistance to Disease and Insensitivity to Ptr Toxins in Canadian Spring Wheat Using 90K SNP Array. Crop Science, 2017, 57, 1522-1539.	0.8	24
85	Genetic structure of Pyrenophora teres f. teres and P. teres f. maculata populations from western Canada. European Journal of Plant Pathology, 2016, 146, 325-335.	0.8	23
86	<i>Brassica</i> B-genome resistance to stem rot (<i>Sclerotinia sclerotiorum</i>) in a doubled haploid population of <i>Brassica napus</i> × <i>Brassica carinata</i> . Canadian Journal of Plant Pathology, 2010, 32, 237-246.	0.8	21
87	Management strategies to reduce losses caused by fusarium seedling blight of field pea. Canadian Journal of Plant Science, 2013, 93, 619-625.	0.3	21
88	Effect of inoculum density and quantitative PCR-based detection of Rhizoctonia solani AG-2-1 and Fusarium avenaceum on canola. Crop Protection, 2014, 59, 71-77.	1.0	20
89	First report of Phytophthora sansomeana causing root rot in field pea in Alberta, Canada. Crop Protection, 2017, 101, 1-4.	1.0	20
90	Genotyping of Plasmodiophora brassicae reveals the presence of distinct populations. BMC Genomics, 2018, 19, 254.	1.2	20

#	Article	IF	CITATIONS
91	Pyrenophora tritici-repentis: A Plant Pathogenic Fungus with Global Impact. , 2014, , 1-39.		20
92	Genetic Diversity and Aggressiveness of <i>Fusarium</i> spp. Isolated from Canola in Alberta, Canada. Plant Disease, 2014, 98, 727-738.	0.7	19
93	Characterization of a Gene Identified in Pathotype 5 of the Clubroot Pathogen <i>Plasmodiophora brassicae</i> . Phytopathology, 2015, 105, 764-770.	1.1	19
94	Comparative Transcriptome Analysis of Rutabaga (Brassica napus) Cultivars Indicates Activation of Salicylic Acid and Ethylene-Mediated Defenses in Response to Plasmodiophora brassicae. International Journal of Molecular Sciences, 2020, 21, 8381.	1.8	19
95	Characterization of clubroot (<i>Plasmodiophora brassicae</i>) from canola (<i>Brassica napus</i>) in the Peace Country of Alberta, Canada. Canadian Journal of Plant Pathology, 2021, 43, 155-161.	0.8	19
96	Characterization of <i>Fusarium avenaceum</i> from lupin in central Alberta: genetic diversity, mating type and aggressiveness. Canadian Journal of Plant Pathology, 2011, 33, 61-76.	0.8	18
97	The effect of seed size, seed treatment, seeding date and depth on Rhizoctonia seedling blight of canola. Canadian Journal of Plant Science, 2014, 94, 311-321.	0.3	18
98	Evaluation of host resistance and fungicide application as tools for the management of root rot of field pea caused by Aphanomyces euteiches. Crop Journal, 2019, 7, 38-48.	2.3	18
99	Pathogenicity and genetic diversity of <i>Rhizoctonia solani</i> isolates from lupin and other crops in Alberta, Canada. Canadian Journal of Plant Pathology, 2009, 31, 340-347.	0.8	17
100	Pathotypes of Plasmodiophora brassicae causing damage to oilseed rape in the Czech Republic and Poland. European Journal of Plant Pathology, 2016, 145, 559-572.	0.8	17
101	Occurrence of Naphtho-Gamma-Pyrones- and Ochratoxin A-Producing Fungi in French Grapes and Characterization of New Naphtho-Gamma-Pyrone Polyketide (Aurasperone G) Isolated from <i>Aspergillus niger</i> C-433. Journal of Agricultural and Food Chemistry, 2007, 55, 8920-8927.	2.4	16
102	Histopathology of internal fruit rot of sweet pepper caused byFusarium lactis. Canadian Journal of Plant Pathology, 2010, 32, 86-97.	0.8	16
103	Influence of resistant cultivars and crop intervals on clubroot of canola. Canadian Journal of Plant Science, 2019, 99, 862-872.	0.3	16
104	Mapping genomic regions controlling agronomic traits in spring wheat under conventional and organic managements. Crop Science, 2020, 60, 2038-2052.	0.8	16
105	Genetic Transformation of the Obligate Parasite <i>Plasmodiophora brassicae</i> . Phytopathology, 2013, 103, 1052-1057.	1.1	15
106	An exo-1,3-Î ² -glucanase GLU1 contributes to the virulence of the wheat tan spot pathogen PyrenophoraÂtritici-repentis. Fungal Biology, 2013, 117, 673-681.	1.1	15
107	Reaction of Lines of the Rapid Cycling Brassica Collection and <i>Arabidopsis thaliana</i> to Four Pathotypes of <i>Plasmodiophora brassicae</i> . Plant Disease, 2013, 97, 720-727.	0.7	15
108	Sensitivity of <i>Mycosphaerella pinodes</i> to Pyraclostrobin Fungicide. Plant Disease, 2016, 100, 192-199.	0.7	15

#	Article	IF	CITATIONS
109	Virulence and inoculum densityâ€dependent interactions between clubroot resistant canola (<i>Brassica napus</i>) and <i>Plasmodiophora brassicae</i> . Plant Pathology, 2017, 66, 1318-1328.	1.2	15
110	Mapping QTL Associated with Stripe Rust, Leaf Rust, and Leaf Spotting in a Canadian Spring Wheat Population. Crop Science, 2019, 59, 650-658.	0.8	15
111	Virulence Spectrum of Single-Spore and Field Isolates of <i>Plasmodiophora brassicae</i> Able to Overcome Resistance in Canola (<i>Brassica napus</i>). Plant Disease, 2021, 105, 43-52.	0.7	15
112	Impact of cultivar, row spacing and seeding rate on ascochyta blight severity and yield of chickpea. Canadian Journal of Plant Science, 2007, 87, 395-403.	0.3	14
113	Morphological characterization of fungi associated with the ascochyta blight complex and pathogenic variability of Mycosphaerella pinodes on field pea crops in central Alberta. Crop Journal, 2015, 3, 10-18.	2.3	14
114	A Quantitative PCR System for Measuring <i>Sclerotinia sclerotiorum</i> in Canola (<i>Brassica) Tj ETQq0 0 0</i>	rgBT/Over 0.7	lock 10 Tf 50
115	A molecular marker for the specific detection of new pathotype 5â€like strains of <i>Plasmodiophora brassicae</i> in canola. Plant Pathology, 2018, 67, 1582-1588.	1.2	14
116	Identification of <i>Brassica</i> accessions resistant to â€~old' and â€~new' pathotypes of <i>Plasmodiophora brassicae</i> from Canada. Plant Pathology, 2019, 68, 708-718.	1.2	14
117	Genome-Wide Mapping of Loci Associated With Resistance to Clubroot in Brassica napus ssp. napobrassica (Rutabaga) Accessions From Nordic Countries. Frontiers in Plant Science, 2020, 11, 742.	1.7	14
118	Identification of resistance loci against new pathotypes of Plasmodiophora brassicae in Brassica napus based on genome-wide association mapping. Scientific Reports, 2021, 11, 6599.	1.6	14
119	Resistance Sources to Xanthomonas fragariae in Non-octoploid Strawberry Species. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1653-1656.	0.5	14
120	Enhanced gene replacement frequency in KU70 disruption strain of Stagonospora nodorum. Microbiological Research, 2012, 167, 173-178.	2.5	13
121	Characterization of the fungi associated with ascochyta blight of field pea in Alberta, Canada. Crop Protection, 2013, 54, 55-64.	1.0	13
122	Host–parasite interactions in clubroot of crucifers. Canadian Journal of Plant Pathology, 2014, 36, 113-121.	0.8	13
123	Effect of seeding date and depth, seed size and fungicide treatment on Fusarium and Pythium seedling blight of canola. Canadian Journal of Plant Science, 2015, 95, 293-301.	0.3	13
124	Exploring <i>de novo</i> specificity: the <i>Pyrenophora triticiâ€repentis–</i> barley interaction. Plant Pathology, 2016, 65, 1347-1357.	1.2	13
125	First report of Phytophthora sojae causing root rot in soybean [GlycineÂmax (L.) Merr.] in Alberta, Canada. Crop Protection, 2017, 91, 49-56.	1.0	13
126	QTL Mapping and Inheritance of Clubroot Resistance Genes Derived From Brassica rapa subsp. rapifera (ECD 02) Reveals Resistance Loci and Distorted Segregation Ratios in Two F2 Populations of Different Crosses. Frontiers in Plant Science, 2020, 11, 899.	1.7	13

#	Article	IF	CITATIONS
127	Influence of carbon source on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. Canadian Journal of Microbiology, 2010, 56, 874-882.	0.8	12
128	Effect of seeding practices, temperature and seed treatments on fusarium seedling blight of narrow-leaved lupin. Canadian Journal of Plant Science, 2011, 91, 859-872.	0.3	12
129	Infection and Gene Expression of the Clubroot Pathogen <i>Plasmodiophora brassicae</i> in Resistant and Susceptible Canola Cultivars. Plant Disease, 2016, 100, 824-828.	0.7	12
130	Sensitivity of western Canadian <i>Pyrenophora teres</i> f. <i>teres</i> and <i>P. teres</i> f. <i>maculata</i> isolates to propiconazole and pyraclostrobin. Canadian Journal of Plant Pathology, 2017, 39, 11-24.	0.8	12
131	An Improved Evans Blue Staining Method for Consistent, Accurate Assessment of <i>Plasmodiophora brassicae</i> Resting Spore Viability. Plant Disease, 2019, 103, 2330-2336.	0.7	12
132	Molecular characterization of a <i>Stagonospora nodorum</i> lipase gene <i>LIP1</i> . Plant Pathology, 2011, 60, 698-708.	1.2	11
133	Analysis of expressed sequence tags derived from a compatiblePlasmodiophora brassicae–canola interaction. Canadian Journal of Plant Pathology, 2012, 34, 562-574.	0.8	11
134	Histological analysis of spindle and spheroid root galls caused by Plasmodiophora brassicae. European Journal of Plant Pathology, 2013, 135, 771-781.	0.8	11
135	Effects of soil-borne <i>Rhizoctonia solani</i> on canola seedlings after application of glyphosate herbicide. Canadian Journal of Plant Science, 2013, 93, 97-107.	0.3	11
136	Quantifying resistance to <i><scp>P</scp>lasmodiophora brassicae</i> in <i><scp>B</scp>rassica</i> hosts. Plant Pathology, 2014, 63, 715-726.	1.2	11
137	Allelic variation and effects of 16 candidate genes on disease resistance in western Canadian spring wheat cultivars. Molecular Breeding, 2017, 37, 1.	1.0	11
138	DNA Sequence Dimorphisms in Populations of the Clubroot Pathogen Plasmodiophora brassicae. Plant Disease, 2018, 102, 1703-1707.	0.7	11
139	Effect of canola (<i>Brassica napus</i>) cultivar rotation on <i>Plasmodiophora brassicae</i> pathotype composition. Canadian Journal of Plant Science, 2020, 100, 218-225.	0.3	11
140	Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2ÂK SNP array and SSR markers. Theoretical and Applied Genetics, 2021, 134, 2965-2990.	1.8	11
141	Mycotoxin production by isolates of Fusarium lactis from greenhouse sweet pepper (Capsicum) Tj ETQq1 1 0.78	4314 rgB ⁻ 2.1	T /Qyerlock 10
142	Efficacy of <scp>V</scp> apam fumigant against clubroot (<i><scp>P</scp>lasmodiophora) Tj ETQq0 0 0 rgBT /</i>	Overlock] 1.2	10 Tf 50 142 1 10
143	The gene Cr811 is present exclusively in pathotype 5 and new emerged pathotypes of the clubroot pathogen Plasmodiophora brassicae. European Journal of Plant Pathology, 2016, 145, 615-620.	0.8	10
144	Race characterization of $\langle i \rangle$ Pyrenophora tritici-repentis $\langle i \rangle$ and sensitivity to propiconazole and	0.8	10

pyraclostrobin fungicides. Canadian Journal of Plant Pathology, 2017, 39, 433-443. 144

#	Article	IF	CITATIONS
145	Density enhancement of a faba bean genetic linkage map (Vicia faba) based on simple sequence repeats markers. Plant Breeding, 2019, 138, 207-215.	1.0	10
146	Yield losses in canola in response to blackleg disease. Canadian Journal of Plant Science, 2020, 100, 488-494.	0.3	10
147	Disease reaction to <i>Fusarium avenaceum</i> and yield losses in narrow-leafed lupin lines. Canadian Journal of Plant Science, 2014, 94, 1211-1218.	0.3	9
148	Genetic variation of <i>Rhizoctonia solani</i> isolates from canola in Alberta, Canada. Canadian Journal of Plant Science, 2014, 94, 671-681.	0.3	9
149	The sensitivity of Canadian wheat genotypes to the necrotrophic effectors produced by <i>Pyrenophora tritici-repentis</i> . Canadian Journal of Plant Pathology, 2017, 39, 149-162.	0.8	9
150	Application of genomics and transcriptomics to accelerate development of clubroot resistant canola. Canadian Journal of Plant Pathology, 2021, 43, 189-208.	0.8	9
151	Evaluation of lime products for clubroot (<i>Plasmodiophora brassicae</i>) management in canola (<i>Brassica napus</i>) cropping systems. Canadian Journal of Plant Pathology, 2022, 44, 21-38.	0.8	9
152	Clubroot Symptoms and Resting Spore Production in a Doubled Haploid Population of Oilseed Rape (Brassica napus) Are Controlled by Four Main QTLs. Frontiers in Plant Science, 2020, 11, 604527.	1.7	9
153	Yield loss and management of downy mildew on field pea in Alberta, Canada. Crop Protection, 2013, 46, 23-28.	1.0	8
154	Pathogenic Variability and Prevalence of Avr Genes in Leptosphaeria maculans Populations from Alberta, Canada. Journal of Plant Diseases and Protection, 2015, 122, 161-168.	1.6	8
155	Disease reaction to <i> Rhizoctonia solani</i> and yield losses in soybean. Canadian Journal of Plant Science, 2017, , .	0.3	8
156	Occurrence, pathogenicity and species identification of Pythium causing root rot of soybean in Alberta and Manitoba, Canada. Crop Protection, 2019, 118, 36-43.	1.0	8
157	First Report of <i>Fusarium cuneirostrum</i> Causing Root Rot Disease in Dry Bean (<i>Phaseolus) Tj ETQq1 1 (</i>	0.784314 0.7	rgBŢ /Overloci
158	Sensitivity of <i>Leptosphaeria maculans</i> to pyraclostrobin in Alberta, Canada. Canadian Journal of Plant Science, 0, , .	0.3	7
159	Influence of nitrogen sources on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. Crop Journal, 2016, 4, 119-128.	2.3	7
160	Resistance to <i>Pyrenophora teres</i> f. <i>teres</i> and <i>P. teres</i> f. <i>maculata</i> in Canadian Barley Genotypes. Crop Science, 2017, 57, 151-160.	0.8	7
161	Molecular genetic diversity and population structure analyses of rutabaga accessions from Nordic countries as revealed by single nucleotide polymorphism markers. BMC Genomics, 2021, 22, 442.	1.2	7
162	Current and Future Pathotyping Platforms for Plasmodiophora brassicae in Canada. Plants, 2021, 10, 1446.	1.6	7

#	Article	IF	CITATIONS
163	Effect of Seed Treatments and Root Pathogens on Seedling Establishment and Yield of Alfalfa, Birdsfoot Trefoil and Sweetclover. Plant Pathology Journal, 2006, 5, 322-328.	0.7	7
164	Candidate Effectors of Plasmodiophora brassicae Pathotype 5X During Infection of Two Brassica napus Genotypes. Frontiers in Microbiology, 2021, 12, 742268.	1.5	7
165	Pathogenic diversity of Didymella rabiei isolates from southern Alberta, Canada. Journal of Plant Diseases and Protection, 2007, 114, 189-195.	1.6	6
166	First report of <i>Verticillium dahliae</i> Kleb. causing wilt symptoms in canola (<i>Brassica) Tj ETQq0 0 0 rgBT</i>	Overlock	10 Tf 50 622 ⁻
167	Management of root rot of soybean in Alberta with fungicide seed treatments and genetic resistance. Canadian Journal of Plant Science, 2019, 99, 499-509.	0.3	6
168	Infection of canola by the root pathogen Plasmodiophora brassicae increases resistance to aboveground herbivory by bertha armyworm, Mamestra configurata Walker (Lepidoptera: Noctuidae). Plant Science, 2020, 300, 110625.	1.7	6
169	Differentially expressed genes in canola (Brassica napus) during infection by virulent and avirulent Plasmodiophora brassicae pathotypes. Plant Pathology, 2021, 70, 50-60.	1.2	6
170	Plasmodiophora brassicae Inoculum Density and Spatial Patterns at the Field Level and Relation to Soil Characteristics. Pathogens, 2021, 10, 499.	1.2	6
171	Race distribution of <i>Pyrenophora tritici-repentis</i> in relation to ploidy level and susceptibility of durum and winter bread wheat. Canadian Journal of Plant Pathology, 2021, 43, 582-598.	0.8	6
172	Characterization of Pyrenophora tritici-repentis in Tunisia and Comparison with a Global Pathogen Population. Plant Disease, 2021, , .	0.7	6
173	Effect of clubroot (<i>Plasmodiophora brassicae</i>) on yield of canola (<i>Brassica napus</i>). Canadian Journal of Plant Pathology, 2022, 44, 372-385.	0.8	6
174	Histopathology of the Plasmodiophora brassicae-Chinese Cabbage Interaction in Hosts Carrying Different Sources of Resistance. Frontiers in Plant Science, 2021, 12, 783550.	1.7	6
175	Response of lentil cultivars to rhizoctonia seedling diseases in Canada. Journal of Plant Diseases and Protection, 2006, 113, 219-223.	1.6	5
176	Late Glyphosate Applications Alter Yield and Yield Components in Glyphosate-Resistant Canola (<i>Brassica napus</i>). Weed Technology, 2015, 29, 675-683.	0.4	5
177	Effects of rate and application method on the efficacy of metam sodium to reduce clubroot (Plasmodiophora brassicae) of canola. European Journal of Plant Pathology, 2018, 150, 341-349.	0.8	5
178	Evaluation of pyraclostrobin as a component in seed and foliar fungicides for the management of blackleg (<i>Leptosphaeria maculans</i>) of canola (<i>Brassica napus</i>). Canadian Journal of Plant Science, 2020, 100, 549-559.	0.3	5
179	Identification of a Locus Conferring Dominant Susceptibility to Pyrenophora tritici-repentis in Barley. Frontiers in Plant Science, 2020, 11, 158.	1.7	5
180	Genetic Structure of <i>Plasmodiophora brassicae</i> Populations Virulent on Clubroot Resistant Canola (<i>Brassica napus</i>). Plant Disease, 2021, 105, 3694-3704.	0.7	5

#	Article	IF	CITATIONS
181	Development of molecular markers to identify distinct populations of Plasmodiophora brassicae. European Journal of Plant Pathology, 2021, 159, 637-654.	0.8	5
182	Virulence and diversity of Peronospora viciae f. sp. pisi in Alberta, Canada. Crop Protection, 2013, 43, 18-26.	1.0	4
183	The impact ofFusarium avenaceumon lupin production on the Canadian prairies. Canadian Journal of Plant Pathology, 2014, 36, 291-299.	0.8	4
184	Baseline sensitivity and the population shifts of Didymella rabiei in chickpea to the Qol fungicide pyraclostrobin in Alberta, Canada. Journal of Plant Diseases and Protection, 2014, 121, 164-170.	1.6	4
185	Suppression of clubroot by dazomet fumigant. Canadian Journal of Plant Science, O, , .	0.3	4
186	The race structure of <i>Leptosphaeria maculans</i> in western Canada between 2012 and 2014 and its influence on blackleg of canola. Canadian Journal of Plant Pathology, 2021, 43, 480-493.	0.8	4
187	Identification of Quantitative Trait Loci Associated With Partial Resistance to Fusarium Root Rot and Wilt Caused by Fusarium graminearum in Field Pea. Frontiers in Plant Science, 2021, 12, 784593.	1.7	4
188	Host Diversification May Split Epidemic Spread into Two Successive Fronts Advancing at Different Speeds. Bulletin of Mathematical Biology, 2022, 84, .	0.9	4
189	Protocol: rhPCR and SNaPshot assays to distinguish Plasmodiophora brassicae pathotype clusters. Plant Methods, 2022, 18, .	1.9	4
190	Response of Glufosinate-Resistant Canola to Late Applications of Glufosinate. Agronomy Journal, 2016, 108, 358-364.	0.9	3
191	Decreased Sensitivity of <i>Leptosphaeria maculans</i> to Pyraclostrobin in Alberta, Canada. Plant Disease, 2020, 104, 2462-2468.	0.7	3
192	Clubroot resistance derived from the European Brassica napus cv. â€Tosca' is not effective against virulent Plasmodiophora brassicae isolates from Alberta, Canada. Scientific Reports, 2021, 11, 14472.	1.6	3
193	Effects of Erysiphe pisi on protein profiles and ribulose-1,5-bisphosphate carboxylase content in resistant and susceptible pea (Pisum sativum × Pisum fulvum) plants. Journal of Plant Diseases and Protection, 2010, 117, 15-23.	1.6	2
194	Characterization of <i>Fusarium</i> spp. associated with lupin in central Alberta, Canada. Canadian Journal of Plant Pathology, 2013, 35, 56-67.	0.8	2
195	Influence of Late Applications of Imazamox on Imidazolinone-Resistant Canola (Brassica napus). Weed Technology, 2016, 30, 595-600.	0.4	2
196	Identification of winter and spring <i>Brassica napus</i> genotypes with partial resistance to Canadian isolates of <i>Plasmodiophora brassicae</i> . Canadian Journal of Plant Pathology, 2020, 42, 538-546.	0.8	2
197	Tan spot disease under the lenses of plant pathologists. Burleigh Dodds Series in Agricultural Science, 2021, , 589-622.	0.1	2
198	Evaluation of Host Resistance, Hydrated Lime, and Weed Control to Manage Clubroot in Canola. Horticulturae, 2022, 8, 215.	1.2	2

#	Article	IF	CITATIONS
199	Adaptation to host (chickpea) genotype by isolates of Didymella rabiei following repeated cycles of infection. Journal of Plant Diseases and Protection, 2009, 116, 177-181.	1.6	1
200	Simple sequence repeat marker analysis reveals grouping of Pyrenophora tritici-repentis isolates based on geographic origin. Canadian Journal of Plant Pathology, 2019, 41, 218-227.	0.8	1
201	Suppression of Canola (Brassica napus) Resistance by Virulent Isolates of Plasmodiophora brassicae (Clubroot) During Primary Infection. Plant Disease, 2020, 104, 430-437.	0.7	1
202	Investigating the potential of unsaturated fatty acids as antifungal crop protective agents. Canadian Journal of Plant Science, 2021, 101, 73-85.	0.3	1
203	Effect of fungicide application technology on seed yield in field pea under variable Mycosphaerella blight pressure. Canadian Journal of Plant Pathology, 2021, 43, 680-693.	0.8	1
204	Identification of Arabidopsis Phospholipase A Mutants With Increased Susceptibility to Plasmodiophora brassicae. Frontiers in Plant Science, 2022, 13, 799142.	1.7	1
205	Detection and molecular characterization of an aster yellows phytoplasma in rhodiola in Alberta, Canada. Journal of Plant Diseases and Protection, 2009, 116, 145-148.	1.6	0
206	Transformation of a Ptr ToxB Nonproducing Isolate of <i>Pyrenophora triticiâ€repentis</i> with the <i>ToxB</i> Gene Confers Pathogenicity on a Toxinâ€Sensitive Wheat Genotype. Crop Science, 2014, 54, 2735-2744.	0.8	0
207	Alkaline treatment of resting spores prior to DNA extraction improves the purity of Plasmodiophora brassicae DNA. Journal of Microbiological Methods, 2018, 149, 120-122.	0.7	0
208	Molecular evaluation of Plasmodiophora brassicae collections for the presence of divergent genetic pathogen populations before and after the release of clubroot resistant canola. Canadian Journal of Plant Pathology, 0, , .	0.8	0