Cun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9905599/publications.pdf

Version: 2024-02-01

		1307594	1588992
8	225	7	8
papers	citations	h-index	g-index
0	0	0	00
8	8	8	90
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Degradation of bisphenol a using peroxymonosulfate activated by single-atomic cobalt catalysts: Different reactive species at acidic and alkaline pH. Chemical Engineering Journal, 2022, 439, 135002.	12.7	33
2	Atomically Dispersed Manganese on Biochar Derived from a Hyperaccumulator for Photocatalysis in Organic Pollution Remediation. Environmental Science & Eamp; Technology, 2022, 56, 8034-8042.	10.0	41
3	An N,S-Anchored Single-Atom Catalyst Derived from Domestic Waste for Environmental Remediation. ACS ES&T Engineering, 2021, 1, 1460-1469.	7.6	33
4	Facet-Dependent Photoinduced Transformation of Cadmium Sulfide (CdS) Nanoparticles. Environmental Science & Environmental Scie	10.0	5
5	Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil. Environmental Science & Eamp; Technology, 2021, 55, 14281-14293.	10.0	48
6	Direct Prediction of Bioaccumulation of Organic Contaminants in Plant Roots from Soils with Machine Learning Models Based on Molecular Structures. Environmental Science & Env	10.0	25
7	Role of Reduced Sulfur in the Transformation of Cd(II) Immobilized by δ-MnO ₂ . Environmental Science & Sc	10.0	22
8	Dissolution and Transformation of ZnO Nano- and Microparticles in Soil Mineral Suspensions. ACS Earth and Space Chemistry, 2019, 3, 495-502.	2.7	18