Oswald Steward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/990532/publications.pdf

Version: 2024-02-01

254 papers

23,394 citations

76 h-index 9102

257 all docs

257 docs citations

times ranked

257

16963 citing authors

g-index

#	Article	IF	CITATIONS
1	Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Remyelinate and Restore Locomotion after Spinal Cord Injury. Journal of Neuroscience, 2005, 25, 4694-4705.	3.6	1,138
2	A call for transparent reporting to optimize the predictive value of preclinical research. Nature, 2012, 490, 187-191.	27.8	1,055
3	PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nature Neuroscience, 2010, 13, 1075-1081.	14.8	841
4	Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. Journal of Comparative Neurology, 1976, 167, 285-314.	1.6	839
5	Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. Journal of Comparative Neurology, 1976, 169, 347-370.	1.6	763
6	Synaptic Activation Causes the mRNA for the IEG Arc to Localize Selectively near Activated Postsynaptic Sites on Dendrites. Neuron, 1998, 21, 741-751.	8.1	751
7	Protein Synthesis at Synaptic Sites on Dendrites. Annual Review of Neuroscience, 2001, 24, 299-325.	10.7	653
8	Synapses as associative memory elements in the hippocampal formation. Brain Research, 1979, 175, 233-245.	2.2	551
9	Genetic determinants of susceptibility to excitotoxic cell death: Implications for gene targeting approaches. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4103-4108.	7.1	485
10	Synaptic Clustering of AMPA Receptors by the Extracellular Immediate-Early Gene Product Narp. Neuron, 1999, 23, 309-323.	8.1	419
11	Selective Targeting of Newly Synthesized Arc mRNA to Active Synapses Requires NMDA Receptor Activation. Neuron, 2001, 30, 227-240.	8.1	415
12	Compartmentalized Synthesis and Degradation of Proteins in Neurons. Neuron, 2003, 40, 347-359.	8.1	368
13	Lack of Enhanced Spinal Regeneration in Nogo-Deficient Mice. Neuron, 2003, 38, 213-224.	8.1	347
14	MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Developmental Brain Research, 1984, 13, 314-318.	1.7	297
15	Concepts and Methods for the Study of Axonal Regeneration in the CNS. Neuron, 2012, 74, 777-791.	8.1	269
16	Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons. Trends in Neurosciences, 1992, 15, 180-186.	8.6	258
17	The process of reinnervation in the dentate gyrus of the adult rat: A quantitative electron microscopic analysis of terminal proliferation and reactive synaptogenesis. Journal of Comparative Neurology, 1983, 214, 370-386.	1.6	254
18	Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1205-1210.	7.1	251

#	Article	IF	CITATIONS
19	Zn2+ Induces Permeability Transition Pore Opening and Release of Pro-apoptotic Peptides from Neuronal Mitochondria. Journal of Biological Chemistry, 2001, 276, 47524-47529.	3.4	243
20	mRNA Localization in Neurons: A Multipurpose Mechanism?. Neuron, 1997, 18, 9-12.	8.1	240
21	Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: Recovery of alternation performance following unilateral entorhinal cortex lesions. Brain Research Bulletin, 1977, 2, 31-39.	3.0	237
22	Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10718-10723.	7.1	222
23	Mitochondrial uncoupling proteinâ€2 protects the immature brain from excitotoxic neuronal death. Annals of Neurology, 2003, 53, 711-717.	5.3	219
24	Selective dendritic transport of RNA in hippocampal neurons in culture. Nature, 1987, 330, 477-479.	27.8	211
25	A cellular mechanism for targeting newly synthesized mRNAs to synaptic sites on dendrites. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7062-7068.	7.1	211
26	Synaptic Regulation of Translation of Dendritic mRNAs. Journal of Neuroscience, 2006, 26, 7143-7146.	3.6	210
27	False resurrections: Distinguishing regenerated from spared axons in the injured central nervous system. Journal of Comparative Neurology, 2003, 459, 1-8.	1.6	204
28	Differential subcellular localization of particular mRNAs in hippocampal neurons in culture. Neuron, 1990, 5, 821-830.	8.1	195
29	Protein Synthesis within Dendrites: Glycosylation of Newly Synthesized Proteins in Dendrites of Hippocampal Neurons in Culture. Journal of Neuroscience, 1996, 16, 5967-5978.	3.6	178
30	Characterization of GABAergic neurons in hippocampal cell cultures. Journal of Neurocytology, 1994, 23, 279-295.	1.5	176
31	Dendritic reorganization in the denervated dentate gyrus of the rat following entorhinal cortical lesions: A Golgi and electron microscopic analysis. Journal of Comparative Neurology, 1983, 214, 387-403.	1.6	175
32	Differential Intracellular Sorting of Immediate Early Gene mRNAs Depends on Signals in the mRNA Sequence. Journal of Neuroscience, 1998, 18, 26-35.	3.6	174
33	Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. Journal of Comparative Neurology, 2000, 427, 351-361.	1.6	167
34	Replication and reproducibility in spinal cord injury research. Experimental Neurology, 2012, 233, 597-605.	4.1	157
35	Chronic nerve compression induces concurrent apoptosis and proliferation of Schwann cells. Journal of Comparative Neurology, 2003, 461, 174-186.	1.6	155
36	Endogenous Neurogenesis Replaces Oligodendrocytes and Astrocytes after Primate Spinal Cord Injury. Journal of Neuroscience, 2006, 26, 2157-2166.	3.6	149

#	Article	IF	CITATIONS
37	Local Synthesis of Proteins at Synaptic Sites on Dendrites: Role in Synaptic Plasticity and Memory Consolidation?. Neurobiology of Learning and Memory, 2002, 78, 508-527.	1.9	148
38	A quantitative autoradiographic and electrophysiological study of the reinnervation of the dentate gyrus by the contralateral entorhinal cortex following ipsilateral entorhinal lesions. Brain Research, 1976, 114, 181-200.	2.2	147
39	Anisomycin infused into the hippocampus fails to block "reconsolidation" but impairs extinction: The role of re-exposure duration. Learning and Memory, 2006, 13, 27-34.	1.3	147
40	Selective increase in phosphorylation of a 47-kDa protein (F1) directly related to long-term potentiation. Behavioral and Neural Biology, 1985, 43, 3-11.	2.2	146
41	Repulsive Wnt Signaling Inhibits Axon Regeneration after CNS Injury. Journal of Neuroscience, 2008, 28, 8376-8382.	3.6	144
42	Genetic Approaches to Neurotrauma Research: Opportunities and Potential Pitfalls of Murine Models. Experimental Neurology, 1999, 157, 19-42.	4.1	139
43	Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. Journal of Comparative Neurology, 2000, 427, 340-350.	1.6	130
44	Brain-Derived Neurotrophic Factor mRNA and Protein Are Targeted to Discrete Dendritic Laminas by Events That Trigger Epileptogenesis. Journal of Neuroscience, 2004, 24, 6842-6852.	3.6	130
45	Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. Journal of Comparative Neurology, 2007, 500, 433-447.	1.6	124
46	Comparison of seizure phenotype and neurodegeneration induced by systemic kainic acid in inbred, outbred, and hybrid mouse strains. European Journal of Neuroscience, 2006, 24, 2191-2202.	2.6	122
47	Anatomical evidence for a projection from the entorhinal cortex to the contralateral dentate gyrus of the rat. Experimental Neurology, 1975, 47, 433-441.	4.1	121
48	Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states. Pain, 2011, 152, 649-655.	4.2	121
49	High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Molecular Brain Research, 1997, 44, 301-308.	2.3	118
50	Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: Relationship to the corticospinal tract. Experimental Neurology, 2005, 194, 161-174.	4.1	117
51	Facilitation of kindling by prior induction of long-term potentiation in the perforant path. Brain Research, 1987, 420, 109-117.	2.2	116
52	Thrombospondin-4 Contributes to Spinal Sensitization and Neuropathic Pain States. Journal of Neuroscience, 2012, 32, 8977-8987.	3.6	114
53	On the role of hippocampal connections in the performance of place and cue tasks: Comparisons with damage to hippocampus Behavioral Neuroscience, 1984, 98, 946-954.	1.2	114
54	Afferent influences on brain stem auditory nuclei of the chicken: Cessation of amino acid incorporation as an antecedent to age-dependent transneuronal degeneration. Journal of Comparative Neurology, 1985, 231, 385-395.	1.6	111

#	Article	IF	CITATIONS
55	Chronic nerve compression induces local demyelination and remyelination in a rat model of carpal tunnel syndrome. Experimental Neurology, 2004, 187, 500-508.	4.1	110
56	A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice. Experimental Neurology, 2008, 209, 446-468.	4.1	110
57	Actin Polymerization and ERK Phosphorylation Are Required for Arc/Arg3.1 mRNA Targeting to Activated Synaptic Sites on Dendrites. Journal of Neuroscience, 2007, 27, 9054-9067.	3.6	105
58	Selective localization of polyribosomes beneath developing synapses: A quantitative analysis of the relationships between polyribosomes and developing synapses in the hippocampus and dentate gyrus. Journal of Comparative Neurology, 1991, 314, 545-557.	1.6	104
59	Selective Localization of (i) Arc (i) mRNA in Dendrites Involves Activity- and Translation-Dependent mRNA Degradation. Journal of Neuroscience, 2014, 34, 4481-4493.	3.6	104
60	Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Experimental Neurology, 2015, 266, 147-160.	4.1	102
61	Rapid Activation of Plasticity-Associated Gene Transcription in Hippocampal Neurons Provides a Mechanism for Encoding of One-Trial Experience. Journal of Neuroscience, 2009, 29, 898-906.	3.6	101
62	Development of a Database for Translational Spinal Cord Injury Research. Journal of Neurotrauma, 2014, 31, 1789-1799.	3.4	100
63	Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria. Journal of Neuroscience Methods, 2004, 137, 299-303.	2.5	98
64	AAVshRNA-Mediated Suppression of PTEN in Adult Rats in Combination with Salmon Fibrin Administration Enables Regenerative Growth of Corticospinal Axons and Enhances Recovery of Voluntary Motor Function after Cervical Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 9951-9962.	3.6	95
65	A re-assessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats. Experimental Neurology, 2006, 198, 483-499.	4.1	94
66	The dorsolateral corticospinal tract in mice: An alternative route for corticospinal input to caudal segments following dorsal column lesions. Journal of Comparative Neurology, 2004, 472, 463-477.	1.6	93
67	Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: open field activity and cue utilization following bilateral entorhinal cortex lesions. Brain Research Bulletin, 1977, 2, 41-48.	3.0	91
68	Reorganization of Neuronal Connections Following CNS Trauma: Principles and Experimental Paradigms. Journal of Neurotrauma, 1989, 6, 99-152.	3.4	91
69	Targeting of mRNAs to subsynaptic microdomains in dendrites. Current Opinion in Neurobiology, 1995, 5, 55-61.	4.2	89
70	Ascending sensory, but not other longâ€tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice. Journal of Comparative Neurology, 2003, 462, 431-449.	1.6	89
71	Lamina-Specific Synaptic Activation Causes Domain-Specific Alterations in Dendritic Immunostaining for MAP2 and CAM Kinase II. Journal of Neuroscience, 1999, 19, 7834-7845.	3.6	87
72	Bilateral cervical contusion spinal cord injury in rats. Experimental Neurology, 2009, 220, 9-22.	4.1	86

#	Article	IF	CITATIONS
73	The mRNA for Elongation Factor 1Â Is Localized in Dendrites and Translated in Response to Treatments That Induce Long-Term Depression. Journal of Neuroscience, 2005, 25, 7199-7209.	3.6	85
74	The effect of unilateral basilar papilla removal upon nuclei laminaris and magnocellularis of the chick examined with [3H]2-deoxy-d-glucose autoradiography. Brain Research, 1980, 196, 43-58.	2.2	84
75	The process of reinnervation in the dentate gyrus of adult rats: An ultrastructural study of changes in presynaptic terminals as a result of sprouting. Journal of Comparative Neurology, 1988, 267, 203-210.	1.6	81
76	Rapamycin and Interleukin- \hat{l}^2 Impair Brain-derived Neurotrophic Factor-dependent Neuron Survival by Modulating Autophagy. Journal of Biological Chemistry, 2014, 289, 20615-20629.	3.4	81
77	Regenerative Growth of Corticospinal Tract Axons via the Ventral Column after Spinal Cord Injury in Mice. Journal of Neuroscience, 2008, 28, 6836-6847.	3.6	79
78	Genetic influences on cellular reactions to spinal cord injury: A wound-healing response present in normal mice is impaired in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration., 1996, 371, 485-495.		77
79	Localization and local translation of Arc/Arg3.1 mRNA at synapses: some observations and paradoxes. Frontiers in Molecular Neuroscience, 2014, 7, 101.	2.9	75
80	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	4.1	75
81	The Process of Reinnervation in the Dentate Gyrus of Adult Rats: Temporal Relationship between Changes in the Levels of Glial Fibrillary Acidic Protein (GFAP) and GFAP mRNA in Reactive Astrocytes. Experimental Neurology, 1993, 124, 167-183.	4.1	74
82	Genetic influences on secondary degeneration and wound healing following spinal cord injury in various strains of mice. Journal of Comparative Neurology, 2002, 451, 225-235.	1.6	74
83	Sprouting fibers gain access to circuitry transsynaptically altered by kindling. Experimental Neurology, 1979, 64, 469-481.	4.1	73
84	Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Research, 2015, 1619, 115-123.	2.2	73
85	Blockade of inhibition in a pathway with dual excitatory and inhibitory action unmasks a capability for LTP that is otherwise not expressed. Brain Research, 1990, 516, 292-300.	2.2	71
86	Glial response to neuronal activity: GFAP-mRNA and protein levels are transiently increased in the hippocampus after seizures. Brain Research, 1993, 631, 256-264.	2.2	71
87	Spinal pathways involved in the control of forelimb motor function in rats. Experimental Neurology, 2007, 206, 318-331.	4.1	66
88	Sprouting in the avian brainstem auditory pathway: Dependence on dendritic integrity. Journal of Comparative Neurology, 1981, 202, 397-414.	1.6	65
89	Synapse Replacement on Cortical Neurons following Denervation. Cerebral Cortex, 1991, , 81-131.	0.6	65
90	Quantitative autoradiographic analysis of the time course of proliferation of contralateral entorhinal efferents in the dentate gyrus denervated by ipsilateral entorhinal lesions. Brain Research, 1977, 125, 11-21.	2.2	64

#	Article	IF	Citations
91	Advances in the Management of Spinal Cord Injury. Journal of the American Academy of Orthopaedic Surgeons, The, 2010, 18, 210-222.	2.5	64
92	Assessing the Functional Significance of Lesion-Induced Neuronal Plasticity. International Review of Neurobiology, 1982, 23, 197-254.	2.0	63
93	Signals that induce sprouting in the central nervous system: Sprouting is delayed in a strain of mouse exhibiting delayed axonal degeneration. Experimental Neurology, 1992, 118, 340-351.	4.1	63
94	Evaluation of RNAs Present in Synaptodendrosomes: Dendritic, Glial, and Neuronal Cell Body Contribution. Journal of Neurochemistry, 1993, 61, 835-844.	3.9	63
95	The Unique Histopathological Responses of the Injured Spinal Cord: Implications for Neuroprotective Therapy. Annals of the New York Academy of Sciences, 1999, 890, 366-384.	3.8	63
96	Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis. Stem Cell Reports, 2014, 2, 825-837.	4.8	63
97	Polyribosomes Associated with Dendritic Spines in the Denervated Dentate Gyrus: Evidence for Local Regulation of Protein Synthesis During Reinnervation. Progress in Brain Research, 1983, 58, 131-136.	1.4	62
98	Quantitative assessment of deficits and recovery of forelimb motor function after cervical spinal cord injury in mice. Experimental Neurology, 2004, 190, 184-191.	4.1	62
99	Genetic influences on cellular reactions to spinal cord injury: Activation of macrophages/microglia and astrocytes is delayed in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration., 1996, 371, 469-484.		61
100	Chronic nerve compression injury induces a phenotypic switch of neurons within the dorsal root ganglia. Journal of Comparative Neurology, 2008, 506, 180-193.	1.6	60
101	Unexpected Survival of Neurons of Origin of the Pyramidal Tract after Spinal Cord Injury. Journal of Neuroscience, 2010, 30, 11516-11528.	3.6	60
102	IV. Neurotoxicity of colchicine and other tubulin-binding agents: A selective vulnerability of certain neurons to the disruption of microtubules. Life Sciences, 1984, 35, 43-51.	4.3	58
103	Multiple subcellular mRNA distribution patterns in neurons: A nonisotopicin situ hybridization analysis., 1997, 33, 473-493.		58
104	A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury. Experimental Neurology, 2014, 257, 186-204.	4.1	58
105	An immunocytochemical and biochemical study of the microtubule-associated protein MAP-2 during post-lesion dendritic remodeling in the central nervous system of adult rats. Molecular Brain Research, 1988, 3, 233-246.	2.3	57
106	Time course of increases in retrograde labeling and increases in cell size of entorhinal cortex neurons sprouting in response to unilateral entorhinal lesions. Journal of Comparative Neurology, 1980, 189, 359-379.	1.6	55
107	No evidence for disruption of normal patterns of mRNA localization in dendrites or dendritic transport of recently synthesized mRNA in FMR1 knockout mice, a model for human fragile-X mental retardation syndrome. NeuroReport, 1998, 9, 477-481.	1.2	54
108	Local down-regulation of myelin-associated glycoprotein permits axonal sprouting with chronic nerve compression injury. Experimental Neurology, 2006, 200, 418-429.	4.1	54

#	Article	IF	CITATIONS
109	Impaired immune responses following spinal cord injury lead to reduced ability to control viral infection. Experimental Neurology, 2010, 226, 242-253.	4.1	54
110	Identification of the cells of origin of a central pathway which sprouts following lesions in mature rats. Brain Research, 1978, 147, 223-243.	2.2	53
111	Ultrastructural basis for gene expression at the synapse: synapse-associated polyribosome complexes. Journal of Neurocytology, 1996, 25, 717-734.	1.5	53
112	A reassessment of whether cortical motor neurons die following spinal cord injury. Journal of Comparative Neurology, 2011, 519, 2852-2869.	1.6	53
113	Protein synthesis and processing in cytoplasmic microdomains beneath postsynaptic sites on CNS neurons. Molecular Neurobiology, 1988, 2, 227-261.	4.0	52
114	Rigor or Mortis: Best Practices for Preclinical Research in Neuroscience. Neuron, 2014, 84, 572-581.	8.1	52
115	Response to: Kim etÂal., "Axon Regeneration in Young Adult Mice Lacking Nogo-A/B.―Neuron 38, 187–199 Neuron, 2007, 54, 191-195.	8.1	51
116	Calcium Channel $\hat{l}\pm2\hat{l}'1$ Proteins Mediate Trigeminal Neuropathic Pain States Associated with Aberrant Excitatory Synaptogenesis. Journal of Biological Chemistry, 2014, 289, 7025-7037.	3.4	50
117	Role of Early Surgical Decompression of the Intradural Space After Cervical Spinal Cord Injury in an Animal Model. Journal of Bone and Joint Surgery - Series A, 2010, 92, 1206-1214.	3.0	49
118	Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. Lab on A Chip, 2010, 10, 2083.	6.0	48
119	LTP-associated EPSP/spike dissociation in the dentate gyrus: GABAergic and non-GABAergic components. Brain Research, 1991, 561, 27-34.	2.2	47
120	Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapseâ€specific mRNA translation. Journal of Comparative Neurology, 2012, 520, 3105-3119.	1.6	47
121	Salmon fibrin treatment of spinal cord injury promotes functional recovery and density of serotonergic innervation. Experimental Neurology, 2012, 235, 345-356.	4.1	47
122	Matrix metalloproteinase 3 deletion preserves denervated motor endplates after traumatic nerve injury. Annals of Neurology, 2013, 73, 210-223.	5.3	47
123	Electroconvulsive seizures upregulate astroglial gene expression selectively in the dentate gyrus. Molecular Brain Research, 1994, 25, 217-224.	2.3	46
124	Central Mechanisms Mediating Thrombospondin-4-induced Pain States. Journal of Biological Chemistry, 2016, 291, 13335-13348.	3.4	46
125	Characterization of Ectopic Colonies That Form in Widespread Areas of the Nervous System with Neural Stem Cell Transplants into the Site of a Severe Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 14013-14021.	3.6	45
126	Changes in the firing properties of neurons in the dentate gyrus with denervation and reinnervation: Implications for behavioral recovery. Experimental Neurology, 1988, 102, 37-49.	4.1	44

#	Article	IF	CITATIONS
127	Differential susceptibility to striatal neurodegeneration induced by quinolinic acid and kainate in inbred, outbred and hybrid mouse strains. European Journal of Neuroscience, 2006, 24, 3134-3140.	2.6	44
128	Long-Distance Migration and Colonization of Transplanted Neural Stem Cells. Cell, 2014, 156, 385-387.	28.9	43
129	Functional effects of lesion-induced plasticity: Long term potentiation in normal and lesion-induced temporodentate connections. Brain Research, 1979, 176, 65-78.	2.2	42
130	Physical Size Does Not Determine the Unique Histopathological Response Seen in the Injured Mouse Spinal Cord. Journal of Neurotrauma, 2003, 20, 33-42.	3.4	42
131	Evidence that associative interactions between synapses during the induction of long-term potentiation occur within local dendritic domains Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 2368-2372.	7.1	41
132	Dendrites as compartments for macromolecular synthesis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10766-10768.	7.1	41
133	Collateral projections of cells in the surviving entorhinal area which rein-nervate the dentate gyrus of the rat following unilateral entorhinal lesions. Brain Research, 1978, 149, 216-222.	2.2	40
134	The process of reinnervation in the dentate gyrus of adult rats: Gene expression by neurons during the period of lesion-induced growth. Journal of Comparative Neurology, 1995, 359, 391-411.	1.6	40
135	Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiology of Disease, 2020, 140, 104868.	4.4	40
136	Potentiation of the excitatory synaptic action of commissural, associational and entorhinal afferents to dentate granule cells. Brain Research, 1977, 134, 551-560.	2.2	39
137	mRNA distribution within dendrites: Relationship to afferent innervation. Journal of Neurobiology, 1995, 26, 447-459.	3.6	39
138	Lesion-induced synapse reorganization in the hippocampus of cats: Sprouting of entorhinal, commissural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways. Hippocampus, 1992, 2, 247-268.	1.9	38
139	Visualizing Changes in Circuit Activity Resulting from Denervation and Reinnervation Using Immediate Early Gene Expression. Journal of Neuroscience, 2003, 23, 2779-2788.	3.6	38
140	A bilateral cervical contusion injury model in mice: Assessment of gripping strength as a measure of forelimb motor function. Experimental Neurology, 2010, 221, 38-53.	4.1	38
141	Chronic Spinal Cord Injury Impairs Primary Antibody Responses but Spares Existing Humoral Immunity in Mice. Journal of Immunology, 2012, 188, 5257-5266.	0.8	38
142	Synaptic activation of ribosomal protein S6 phosphorylation occurs locally in activated dendritic domains. Learning and Memory, 2016, 23, 255-269.	1.3	37
143	Comparison of the neurotoxic effects of colchicine, the vinca alkaloids, and other microtubule poisons. Brain Research, 1989, 486, 133-140.	2.2	36
144	Forelimb locomotor assessment scale (FLAS): Novel assessment of forelimb dysfunction after cervical spinal cord injury. Experimental Neurology, 2009, 220, 23-33.	4.1	36

#	Article	IF	Citations
145	Deficits in bladder function following spinal cord injury vary depending on the level of the injury. Experimental Neurology, 2010, 226, 128-135.	4.1	36
146	Injury-Induced Physiological Events that may Modulate Gene Expression in Neurons and Glia. Reviews in the Neurosciences, 1997, 8, 147-77.	2.9	35
147	A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats. Experimental Neurology, 2012, 233, 625-644.	4.1	35
148	Rodent spinal cord injury models for studies of axon regeneration. Experimental Neurology, 2017, 287, 374-383.	4.1	35
149	mRNA at Synapses, Synaptic Plasticity, and Memory Consolidation. Neuron, 2002, 36, 338-340.	8.1	34
150	A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury. Experimental Neurology, 2013, 248, 321-337.	4.1	34
151	Modest enhancement of sensory axon regeneration in the sciatic nerve with conditional co-deletion of PTEN and SOCS3 in the dorsal root ganglia of adult mice. Experimental Neurology, 2018, 303, 120-133.	4.1	34
152	Synaptic reorganization within the human central nervous system following injury. Journal of Neurosurgery, 1989, 71, 534-537.	1.6	33
153	Increases in mRNA for cytoskeletal proteins in the denervated neuropil of the dentate gyrus: an in situ hybridization study using riboprobes for \hat{l}^2 -actin and \hat{l}^2 -tubulin. Molecular Brain Research, 1990, 8, 249-257.	2.3	33
154	Assessment of the role of MAP kinase in mediating activity-dependent transcriptional activation of the immediate early gene Arc/Arg3.1 in the dentate gyrus in vivo. Learning and Memory, 2010, 17, 117-129.	1.3	33
155	Non-invasive High Frequency Repetitive Transcranial Magnetic Stimulation (hfrTMS) Robustly Activates Molecular Pathways Implicated in Neuronal Growth and Synaptic Plasticity in Select Populations of Neurons. Frontiers in Neuroscience, 2020, 14, 558.	2.8	33
156	Histochemical evidence for a post-lesion reorganization of cholinergic afferents in the hippocampal formation of the mature cat. Journal of Comparative Neurology, 1978, 178, 697-709.	1.6	31
157	An immunocytochemical and biochemical study of the microtubule-associated protein Tau during post-lesion afferent reorganization in the hippocampus of adult rats. Brain Research, 1987, 419, 244-252.	2.2	31
158	Increases in ribosomal RNA within the denervated neuropil of the dentate gyrus during reinnervation: evaluation by in situ hybridization using DNA probes complementary to ribosomal RNA. Molecular Brain Research, 1987, 2, 251-261.	2.3	31
159	Metabolic changes accompanying denervation and reinnervation of the dentate gyrus of the rat measured by [3H]2-deoxyglucose autoradiographyâ~†. Experimental Neurology, 1980, 69, 513-527.	4.1	30
160	Mechanisms of Motor Recovery after Subtotal Spinal Cord Injury: Insights from the Study of Mice Carrying a Mutation (WldS) That Delays Cellular Responses to Injury. Experimental Neurology, 1998, 149, 221-229.	4.1	30
161	Sphingosine-1-Phosphate Receptor Antagonism Enhances Proliferation and Migration of Engrafted Neural Progenitor Cells in a Model of Viral-Induced Demyelination. American Journal of Pathology, 2015, 185, 2819-2832.	3.8	30
162	Subcellular distribution of rRNA and poly(A) RNA in hippocampal neurons in culture. Molecular Brain Research, 1993, 20, 305-312.	2.3	29

#	Article	IF	CITATIONS
163	Translating Axon Guidance Cues. Cell, 2002, 110, 537-540.	28.9	29
164	Assessment of Factors Regulating Axon Growth between the Cortex and Spinal Cord in Organotypic Co-Cultures: Effects of Age and Neurotrophic Factors. Journal of Neurotrauma, 2004, 21, 339-356.	3.4	29
165	Protein synthesis within dendrites: lonic and neurotransmitter modulation of synthesis of particular polypeptides characterized by gel electrophoresis. Neurochemical Research, 1996, 21, 681-690.	3.3	28
166	Understanding the Biology of Compressive Neuropathies. Clinical Orthopaedics and Related Research, 2005, &NA, 251-260.	1.5	28
167	Neuronal PTEN deletion in adult cortical neurons triggers progressive growth of cell bodies, dendrites, and axons. Experimental Neurology, 2018, 303, 12-28.	4.1	27
168	Analysis of collateral projections with a double retrograde labeling technique. Neuroscience Letters, $1977, 5, 1-5$.	2.1	26
169	Spreading depression and reverberatory seizures induce the upregulation of mRNA for glial fibrillary acidic protein. Brain Research, 1994, 645, 215-224.	2.2	26
170	Trajectory of contralateral entorhinal axons which reinnervate the fascia dentata of the rat following ipsilateral entorhinal lesions. Brain Research, 1980, 183, 277-289.	2.2	25
171	Chapter 22 Regulation of synaptogenesis through the local synthesis of protein at the postsynaptic site. Progress in Brain Research, 1987, 71, 267-279.	1.4	25
172	Genetic influences on cellular reactions to CNS injury: The reactive response of astrocytes in denervated neuropil regions in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration., 1997, 380, 70-81.		25
173	Spatial Learning and Memory Is Preserved in Rats after Early Development in a Microgravity Environment. Neurobiology of Learning and Memory, 2002, 78, 199-216.	1.9	25
174	Rostro-Caudal Specificity of Corticospinal Tract Projections in Mice. Cerebral Cortex, 2021, 31, 2322-2344.	2.9	25
175	Horseradish Peroxidase and Fluorescent Substances and Their Combination with Other Techniques. , 1981, , 279-310.		25
176	A noninvasive ultrasonographic method to evaluate bladder function recovery in spinal cord injured rats. Experimental Neurology, 2005, 194, 120-127.	4.1	24
177	A form of perforant path LTP can occur without ERK1/2 phosphorylation or immediate early gene induction. Learning and Memory, 2007, 14, 433-445.	1.3	24
178	Recovery of forepaw gripping ability and reorganization of cortical motor control following cervical spinal cord injuries in mice. Experimental Neurology, 2007, 203, 333-348.	4.1	24
179	Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice. Experimental Neurology, 2016, 279, 27-39.	4.1	24
180	Habituation-like decrements in transmission along the normal and lesion-induced temporodentate pathways in the rat. Brain Research, 1978, 151, 623-631.	2.2	23

#	Article	IF	Citations
181	Ganglioside treatments reduce locomotor hyperactivity after bilateral lesions of the entorhinal cortex. Neuroscience Letters, 1987, 75, 283-287.	2.1	23
182	Signals That Regulate Astroglial Gene Expression: Induction of GFAP mRNA Following Seizures or Injury Is Blocked by Protein Synthesis Inhibitors. Experimental Neurology, 1997, 148, 100-109.	4.1	21
183	Genetic influences on cellular reactions to brain injury: Activation of microglia in denervated neuropil in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration., 1997, 380, 82-94.		21
184	Differential mRNA localization in astroglial cells in culture. Journal of Comparative Neurology, 2001, 430, 56-71.	1.6	21
185	Localization of mRNAs at Synaptic Sites on Dendrites. Results and Problems in Cell Differentiation, 2001, 34, 1-26.	0.7	21
186	Retrograde labeling of central nervous pathways with tritiated or Evans blue-labeled bovine serum albumin. Neuroscience Letters, 1976, 3, 191-196.	2.1	20
187	Analysis of the habituation-like changes in transmission in the temporodentate pathway of the rat. Brain Research, 1979, 162, 21-32.	2.2	20
188	The time course of changes in open field activity following bilateral entorhinal lesions in rats and cats. Behavioral and Neural Biology, 1981, 32, 1-20.	2.2	20
189	Synaptically driven phosphorylation of ribosomal protein S6 is differentially regulated at active synapses versus dendrites and cell bodies by MAPK and PI3K/mTOR signaling pathways. Learning and Memory, 2017, 24, 341-357.	1.3	20
190	The role of extracellular ionic changes in upregulating the mRNA for glial fibrillary acidic protein following spreading depression. Brain Research, 1995, 674, 314-328.	2.2	19
191	Human motor endplate remodeling after traumatic nerve injury. Journal of Neurosurgery, 2020, 135, 220-227.	1.6	19
192	Ultrastructural characterization of the synapses of the crossed temporodentate pathway in rats. Journal of Comparative Neurology, 1988, 267, 190-202.	1.6	18
193	Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knockâ€down. Journal of Comparative Neurology, 2016, 524, 2654-2676.	1.6	18
194	Disruption of Inhibition in Area CA1 of the Hippocampus in a Rat Model of Temporal Lobe Epilepsy. Journal of Neurophysiology, 2001, 86, 2231-2245.	1.8	17
195	Synaptic loss and retention of different classic cadherins with LTPâ€associated synaptic structural remodeling in vivo. Hippocampus, 2012, 22, 17-28.	1.9	17
196	Cholinergic Sprouting Is Blocked by Repeated Induction of Electroconvulsive Seizures, a Manipulation That Induces a Persistent Reactive State in Astrocytes. Experimental Neurology, 1994, 129, 103-111.	4.1	16
197	The Process of Reinnervation in the Dentate Gyrus of Adult Rats: Physiological Events at the Time of the Lesion and during the Early Postlesion Period. Experimental Neurology, 1996, 139, 73-82.	4.1	16
198	Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury. Brain Research, 2015, 1619, 124-138.	2.2	16

#	Article	IF	CITATIONS
199	Delayed Degradation and Impaired Dendritic Delivery of Intron-Lacking EGFP-Arc/Arg3.1 mRNA in EGFP-Arc Transgenic Mice. Frontiers in Molecular Neuroscience, 2017, 10, 435.	2.9	16
200	Septations in chronic spinal cord injury cavities contain axons. Experimental Neurology, 2005, 196, 339-341.	4.1	15
201	A re-assessment of the effects of treatment with an epidermal growth factor receptor (EGFR) inhibitor on recovery of bladder and locomotor function following thoracic spinal cord injury in rats. Experimental Neurology, 2012, 233, 649-659.	4.1	15
202	Recovery from Coma Post-Cardiac Arrest Is Dependent on the Orexin Pathway. Journal of Neurotrauma, 2017, 34, 2823-2832.	3.4	15
203	Decreases in excitatory synaptic transmission and increases in recurrent inhibition in the rat dentate gyrus after transient cerebral ischemia. Brain Research, 1989, 505, 220-224.	2.2	14
204	A straight alley version of the BBB locomotor scale. Experimental Neurology, 2009, 217, 417-420.	4.1	14
205	Biophysical stimulation induces demyelination via an integrinâ€dependent mechanism. Annals of Neurology, 2012, 72, 112-123.	5.3	14
206	Thrombospondinâ€4 contributes to spinal cord injuryâ€induced changes in nociception. European Journal of Pain, 2013, 17, 1458-1464.	2.8	14
207	Genetic influences on cellular reactions to spinal cord injury: A woundâ€healing response present in normal mice is impaired in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration. Journal of Comparative Neurology, 1996, 371, 485-495.	1.6	14
208	The Role of Postlesion Seizures and Spreading Depression in the Upregulation of Glial Fibrillary Acidic Protein mRNA after Entorhinal Cortex Lesions. Experimental Neurology, 1996, 139, 83-94.	4.1	13
209	Glycoprotein synthesis at the synapse: fractionation of polypeptides synthesized within isolated dendritic fragments by concanavalin A affinity chromatography. Molecular Brain Research, 2001, 91, 137-147.	2.3	13
210	Age-Dependent Resistance to Excitotoxicity in Htt CAG140 Mice and the Effect of Strain Background. Journal of Huntington's Disease, 2012, 1, 221-241.	1.9	13
211	A re-assessment of the effects of intracortical delivery of inosine on transmidline growth of corticospinal tract axons after unilateral lesions of the medullary pyramid. Experimental Neurology, 2012, 233, 662-673.	4.1	13
212	A re-assessment of treatment with a tyrosine kinase inhibitor (imatinib) on tissue sparing and functional recovery after spinal cord injury. Experimental Neurology, 2014, 254, 1-11.	4.1	13
213	Protein synthesis in the neuropil of the rat dentate gyrus during synapse development. Journal of Neuroscience Research, 1990, 26, 474-482.	2.9	12
214	An investigation of the cortical control of forepaw gripping after cervical hemisection injuries in rats. Experimental Neurology, 2009, 217, 96-107.	4.1	12
215	Intercellular Arc Signaling Regulates Vasodilation. Journal of Neuroscience, 2021, 41, 7712-7726.	3.6	12
216	Genetic influences on cellular reactions to spinal cord injury: Activation of macrophages/microglia and astrocytes is delayed in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration. Journal of Comparative Neurology, 1996, 371, 469-484.	1.6	12

#	Article	IF	CITATIONS
217	A Rhumba of "R's― Replication, Reproducibility, Rigor, Robustness: What Does a Failure to Replicate Mean?. ENeuro, 2016, 3, ENEURO.0072-16.2016.	1.9	12
218	Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?. Neural Regeneration Research, 2016, 11, 1201.	3.0	12
219	Protein synthesis at the synapse: developmental changes, subcellular localization and regional distribution of polypeptides synthesized in isolated dendritic fragments. Molecular Brain Research, 2001, 91, 148-153.	2.3	11
220	A Rat Chronic Pain Model of Spinal Cord Contusion Injury. Methods in Molecular Biology, 2012, 851, 195-203.	0.9	11
221	Homosynaptic and heterosynaptic changes in driving of dentate gyrus interneurons after brief tetanic stimulation in vivo., 1996, 6, 62-71.		10
222	Nonspecific labeling limits the utility of Cre‣ox bred CST‥FP mice for studies of corticospinal tract regeneration. Journal of Comparative Neurology, 2015, 523, 2665-2682.	1.6	10
223	Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury. Journal of Comparative Neurology, 2016, 524, 309-322.	1.6	10
224	Robotic Rehabilitator of the Rodent Upper Extremity: A System and Method for Assessing and Training Forelimb Force Production after Neurological Injury. Journal of Neurotrauma, 2016, 33, 460-467.	3.4	10
225	Intravenous delivery of microRNA-133b along with Argonaute-2 enhances spinal cord recovery following cervical contusion in mice. Spine Journal, 2020, 20, 1138-1151.	1.3	10
226	Entorhinal cortical lesions in rats and runway alternation performance: changes in patterns of response initiation. Behavioral and Neural Biology, 1980, 29, 91-104.	2.2	9
227	Harnessing rAAV-retro for gene manipulations in multiple pathways that are interrupted after spinal cord injury. Experimental Neurology, 2022, 350, 113965.	4.1	9
228	Histochemical detection of orthograde degeneration in the central nervous system of the rat. Brain Research, 1973, 54, 65-73.	2.2	8
229	AAVshRNA-mediated PTEN knockdown in adult neurons attenuates activity-dependent immediate early gene induction. Experimental Neurology, 2020, 326, 113098.	4.1	8
230	EVENTS WITHIN THE SPROUTING NEURON AND THE DENERVATED NEUROPIL DURING LESION-INDUCED SYNAPTOGENESIS., 1982,, 33-48.		8
231	Evaluation of short-term cue recollection following entorhinal cortical lesions in rats. Behavioral and Neural Biology, 1981, 31, 187-197.	2.2	7
232	One day of motor training with amphetamine impairs motor recovery following spinal cord injury. Experimental Neurology, 2012, 233, 693-707.	4.1	7
233	Recognizing Team Science Contributions in Academic Hiring, Promotion, and Tenure. Journal of Neuroscience, 2020, 40, 6662-6663.	3.6	7
234	Protein Synthesis and Processing in Cytoplasmic Microdomains Beneath Postsynaptic Sites on CNS Neurons., 1989,, 227-261.		7

#	Article	IF	Citations
235	The role of neuronal activity in upregulating GFAP mRNA levels after electrolytic lesions of the entorhinal cortex. International Journal of Developmental Neuroscience, 1993, 11, 105-115.	1.6	6
236	Examination of the human motor endplate after brachial plexus injury with twoâ€photon microscopy. Muscle and Nerve, 2020, 61, 390-395.	2.2	6
237	Reduction in Caffeine Toxicity by Acetaminophen. Journal of Toxicology: Clinical Toxicology, 1982, 19, 1031-1043.	1.5	4
238	Injection of tetrodotoxin into the entorhinal cortex suppresses cell firing in the dentate gyrus. Experimental Neurology, 1991, 111, 340-348.	4.1	4
239	Lesion-Induced Neuroplasticity and the Sparing or Recovery of Function following Early Brain Damage., 1984,, 59-77.		4
240	The nature of increased histochemical deposition of int formazan in fields of degenerating synaptic terminals. Brain Research, 1973, 63, 183-193.	2.2	3
241	Synaptic plasticity in epileptogenesis: Cellular mechanisms underlying long-lasting synaptic modifications that require new gene expression. International Review of Neurobiology, 2001, 45, 269-292.	2.0	3
242	Genes on distal chromosome 18 determine vulnerability to excitotoxic neurodegeneration following status epilepticus, but not striatal neurodegeneration induced by quinolinic acid. Neurobiology of Disease, 2008, 29, 391-399.	4.4	3
243	Local Protein Synthesis at Synapses. , 2014, , 173-194.		3
244	Overnight Caloric Restriction Prior to Cardiac Arrest and Resuscitation Leads to Improved Survival and Neurological Outcome in a Rodent Model. Frontiers in Neuroscience, 2020, 14, 609670.	2.8	3
245	Sorting and Intracellular Transport of RNA in Neurons: Regulation of Gene Expression at Synaptic Sites. Basic and Clinical Aspects of Neuroscience, 1994, , 17-29.	0.2	3
246	Temperature-dependent blockade of nucleocytoplasmic transport of newly synthesized RNA in neurons. Molecular Brain Research, 1992, 13, 103-109.	2.3	2
247	Response: Arc mRNA dynamics: a Rosetta stone for deciphering cellular and systems mechanisms in history. Trends in Neurosciences, 2001, 24, 622-623.	8.6	2
248	Synapse-specific gene expression of the IEG arc: Insights into molecular processes in memory consolidation , 2001, , 35-58.		2
249	Anatomical and biochemical plasticity of neurons: regenerative growth of axons, sprouting, pruning, and denervation supersensitivity., 0,, 5-25.		1
250	AAV vectors accumulate in the pineal gland after injections into the brain or spinal cord. Molecular Therapy - Methods and Clinical Development, 2021, 23, 406-417.	4.1	1
251	The successful aging of Carl Cotman: from proteins of the synapse, through sprouting, regeneration, and spinal cord injury to the mechanisms of brain aging. Neurochemical Research, 2003, 28, 1617-1619.	3.3	0
252	Erratum to "An investigation of the cortical control of forepaw gripping after cervical hemisection injuries in rats―[Exp. Neurol. 217/1 (2009) 96–107]. Experimental Neurology, 2009, 219, 595.	4.1	0

#	Article	IF	CITATIONS
253	mRNA Trafficking to Synapses and Memory Formation â~†., 2017, , 153-178.		O
254	Activity induces Arc mRNA degradation that is dependent upon translation and NMDA receptor activation. FASEB Journal, 2012, 26, 950.1.	0.5	0