Khanh Quoc Tran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9904762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colour preference varies with lighting application. Lighting Research and Technology, 2017, 49, 316-328.	2.7	44
2	Colour preference, naturalness, vividness and colour quality metrics, Part 1: Experiments in a room. Lighting Research and Technology, 2017, 49, 697-713.	2.7	40
3	Colour preference, naturalness, vividness and colour quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset. Lighting Research and Technology, 2017, 49, 714-726.	2.7	35
4	Ordinal scale based description of colour rendering. Color Research and Application, 2011, 36, 272-285.	1.6	31
5	Intercultural observer preference for perceived illumination chromaticity for different coloured object scenes. Lighting Research and Technology, 2017, 49, 305-315.	2.7	30
6	Colour preference, naturalness, vividness and colour quality metrics, Part 3: Experiments with makeup products and analysis of the complete warm white dataset. Lighting Research and Technology, 2018, 50, 218-236.	2.7	26
7	Colour preference, naturalness, vividness and colour quality metrics, Part 4: Experiments with still life arrangements at different correlated colour temperatures. Lighting Research and Technology, 2018, 50, 862-879.	2.7	24
8	Circadian metric – Computation of circadian stimulus using illuminance, correlated colour temperature and colour rendering index. Building and Environment, 2020, 184, 107146.	6.9	22
9	Towards a user preference model for interior lighting Part 1: Concept of the user preference model and experimental method. Lighting Research and Technology, 2019, 51, 1014-1029.	2.7	21
10	Colour preference, naturalness, vividness and colour quality metrics, Part 5: A colour preference experiment at 2000 lx in a real room. Lighting Research and Technology, 2019, 51, 262-279.	2.7	16
11	Semantic interpretation of color differences and colorâ€rendering indices. Color Research and Application, 2014, 39, 252-262.	1.6	15
12	Towards a user preference model for interior lighting. Part 2: Experimental results and modelling. Lighting Research and Technology, 2019, 51, 1030-1043.	2.7	14
13	International study on the importance of communication between automated vehicles and pedestrians. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 74, 52-66.	3.7	14
14	Color appearance rating of familiar real objects under immersive viewing conditions. Color Research and Application, 2018, 43, 551-568.	1.6	13
15	Displaying the Driving State of Automated Vehicles to Other Road Users: An International, Virtual Reality-Based Study as a First Step for the Harmonized Regulations of Novel Signaling Devices. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 2904-2918.	8.0	13
16	Deep learning-based pupil model predicts time and spectral dependent light responses. Scientific Reports, 2021, 11, 841.	3.3	13
17	Optimising metameric spectra for integrative lighting to modulate the circadian system without affecting visual appearance. Scientific Reports, 2021, 11, 23188.	3.3	13
18	Observer preference for perceived illumination chromaticity. Color Research and Application, 2018, 43, 506-516	1.6	12

Khanh Quoc Tran

#	Article	IF	CITATIONS
19	PupilEXT: Flexible Open-Source Platform for High-Resolution Pupillometry in Vision Research. Frontiers in Neuroscience, 2021, 15, 676220.	2.8	12
20	Long-term memory color investigation: culture effect and experimental setting factors. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1757.	1.5	12
21	Prediction accuracy of L- and M-cone based human pupil light models. Scientific Reports, 2020, 10, 10988.	3.3	11
22	Opinion: The usefulness of light sources in human centric lighting. Lighting Research and Technology, 2017, 49, 292-292.	2.7	10
23	Circadian stimulus – A computation model with photometric and colorimetric quantities. Lighting Research and Technology, 2020, 52, 751-762.	2.7	10
24	Melanopic Limits of Metamer Spectral Optimisation in Multi-Channel Smart Lighting Systems. Energies, 2021, 14, 527.	3.1	10
25	Measurement of Circadian Effectiveness in Lighting for Office Applications. Applied Sciences (Switzerland), 2021, 11, 6936.	2.5	10
26	Correlations among lighting quality metrics for interior lighting. Lighting Research and Technology, 2019, 51, 1192-1207.	2.7	9
27	Gender Difference in Colour Preference of Lighting: A Pilot Study. Light & Engineering, 2020, , 111-122.	0.3	8
28	Task-related Luminance Distributions for Office Lighting Scenarios. Light & Engineering, 2021, , 115-128.	0.3	7
29	A field test of a simplified method of estimating circadian stimulus. Lighting Research and Technology, 2022, 54, 459-473.	2.7	7
30	Energy Efficient Lighting in Plant Factories: Addressing Utilance. Agronomy, 2021, 11, 2570.	3.0	7
31	Efficiency droop in green InGaN/GaN light emitting diodes: Degradation mechanisms and initial characteristics. Microelectronics Reliability, 2020, 112, 113792.	1.7	6
32	Evidence for Human-Centric In-Vehicle Lighting: Part 1. Applied Sciences (Switzerland), 2022, 12, 552.	2.5	6
33	The Sternberg Paradigm: Correcting Encoding Latencies in Visual and Auditory Test Designs. Vision (Switzerland), 2021, 5, 21.	1.2	5
34	Tackling Heterogeneous Color Registration: Binning Color Sensors. Sensors, 2021, 21, 2950.	3.8	4
35	Determination of Speed-Dependent Roadway Luminance for an Adequate Feeling of Safety at Nighttime Driving. Vehicles, 2021, 3, 821-839.	3.1	4
36	Processing RGB Color Sensors for Measuring the Circadian Stimulus of Artificial and Daylight Light Sources. Applied Sciences (Switzerland), 2022, 12, 1132.	2.5	4

Khanh Quoc Tran

#	Article	IF	CITATIONS
37	Impact of the adapted white point and the cultural background on memory color assessments. Color Research and Application, 2020, 45, 803-824.	1.6	3
38	Unsupervised Clustering Pipeline to Obtain Diversified Light Spectra for Subject Studies and Correlation Analyses. Applied Sciences (Switzerland), 2021, 11, 9062.	2.5	3
39	Strengths and limitations of a uniform 3D-LUT approach for digital camera characterization. Color and Imaging Conference, 2016, 2016, 315-322.	0.2	3
40	Extending the color discrimination metric with consideration of illuminance level. Optics Letters, 2022, 47, 1851.	3.3	3
41	Memory colors and the assessment of color quality in lighting applications. Optics Express, 2021, 29, 28968.	3.4	2
42	Combined Methodology for Accurate Evaluation of Distance and Direction of Chromaticity Shifts in LED Reliability Tests. IEEE Transactions on Device and Materials Reliability, 2021, 21, 500-507.	2.0	2
43	Spectral reflectance estimation of organic tissue for improved color correction of video-assisted surgery. Journal of Electronic Imaging, 2018, 27, 1.	0.9	2
44	Weighting the Relevance of the Different Colours in Subjective Assessments of Colour Preference. Light & Engineering, 2020, , 37-46.	0.3	2
45	Quantifying observer metamerism of LED spectra which chromatically mimic natural daylight. Optics Express, 2021, 29, 38168.	3.4	2
46	Colour Preference Depends on Colour Temperature, Illuminance Level and Object Saturation - a New Metric. Light & Engineering, 2019, , 137-151.	0.3	2
47	Multi-Channel Spectral Sensors as Plant Reflectance Measuring Devices—Toward the Usability of Spectral Sensors for Phenotyping of Sweet Basil (Ocimum basilicum). Agronomy, 2022, 12, 1174.	3.0	2
48	Towards a comprehensive lighting-quality model: validation of brightness, visual clarity, and color preference formulae applicability in two realistic mock-up scenarios. OSA Continuum, 2021, 4, 3139.	1.8	1
49	Brightness In The Photopic Range: Psychophysical Modelling With Blue-sensitive Retinal Signals. Light & Engineering, 2020, , 9-24.	0.3	1
50	Using spectral sensors to determine photosynthetic photon flux density in daylight – A theoretical approach. Lighting Research and Technology, 0, , 147715352210778.	2.7	1
51	Study protocol for measuring the impact of (quasi-)monochromatic light on post-awakening cortisol secretion under controlled laboratory conditions. PLoS ONE, 2022, 17, e0267659.	2.5	1
52	Illumination optics for indoor lighting, automotive and street lighting. Advanced Optical Technologies, 2019, 8, 11-12.	1.7	0
53	Objective Assessment of the Safety Contribution of Today's Automotive Headlamps. ATZ Worldwide, 2020, 122, 66-71.	0.1	0
54	Objective Rating of Modern Headlamps. ATZ Worldwide, 2020, 122, 74-74.	0.1	0

#	Article	IF	CITATIONS
55	Highâ€ r esolution depth measurements in digital microscopic surgery. Engineering Reports, 2021, 3, e12311.	1.7	0