List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/990381/publications.pdf Version: 2024-02-01

KNOINNELIII

#	Article	IF	CITATIONS
1	Porous Nickel–Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Science, 2015, 2, 1500199.	5.6	241
2	An Organometallic Superâ€Gelator with Multiple‣timulus Responsive Properties. Advanced Materials, 2008, 20, 2508-2511.	11.1	230
3	Hierarchical Co(OH)F Superstructure Built by Lowâ€Dimensional Substructures for Electrocatalytic Water Oxidation. Advanced Materials, 2017, 29, 1700286.	11.1	227
4	Telluriumâ€Assisted Epitaxial Growth of Largeâ€Area, Highly Crystalline ReS ₂ Atomic Layers on Mica Substrate. Advanced Materials, 2016, 28, 5019-5024.	11.1	169
5	Efficient and Stable Photoelectrochemical Seawater Splitting with TiO ₂ @ <i>g</i> -C ₃ N ₄ Nanorod Arrays Decorated by Co-Pi. Journal of Physical Chemistry C, 2015, 119, 20283-20292.	1.5	161
6	Thinâ€ S heet Carbon Nanomesh with an Excellent Electrocapacitive Performance. Advanced Functional Materials, 2015, 25, 5420-5427.	7.8	139
7	A Nickelâ€Based Integrated Electrode from an Autologous Growth Strategy for Highly Efficient Water Oxidation. Advanced Energy Materials, 2016, 6, 1502489.	10.2	138
8	Construction of inorganic–organic 2D/2D WO ₃ /g-C ₃ N ₄ nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater. Physical Chemistry Chemical Physics, 2016, 18, 10255-10261.	1.3	118
9	Non-contact identification and differentiation of illicit drugs using fluorescent films. Nature Communications, 2018, 9, 1695.	5.8	113
10	Simple design but marvelous performances: molecular gels of superior strength and self-healing properties. Soft Matter, 2013, 9, 1091-1099.	1.2	91
11	A protein@metal–organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalton Transactions, 2018, 47, 10223-10228.	1.6	91
12	N-Acetylglucosamine-based efficient, phase-selective organogelators for oil spill remediation. Chemical Communications, 2014, 50, 13940-13943.	2.2	88
13	Mesoporous sulfur-doped CoFe2O4 as a new Fenton catalyst for the highly efficient pollutants removal. Applied Catalysis B: Environmental, 2021, 295, 120273.	10.8	88
14	New Dicholesteryl-Based Gelators:  Chirality and Spacer Length Effect. Langmuir, 2008, 24, 2992-3000.	1.6	80
15	Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nature Chemistry, 2019, 11, 375-381.	6.6	76
16	Amino Acid Derivatives of Cholesterol as "Latent―Organogelators with Hydrogen Chloride as a Protonation Reagent. Langmuir, 2006, 22, 7016-7020.	1.6	74
17	Cholesteryl derivatives as phase-selective gelators at room temperature. Tetrahedron, 2009, 65, 3369-3377.	1.0	73
18	Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Research, 2017–10, 2732-2742	5.8	69

2

#	Article	IF	CITATIONS
19	A novel low-molecular-mass gelator with a redox active ferrocenyl group: Tuning gel formation by oxidation. Journal of Colloid and Interface Science, 2008, 318, 397-404.	5.0	66
20	Self-Assembled Perylene Bisimide-Cored Trigonal Prism as an Electron-Deficient Host for C ₆₀ and C ₇₀ Driven by "Like Dissolves Like― Journal of the American Chemical Society, 2020, 142, 15950-15960.	6.6	64
21	Tuning Crystallization Pathways through the Mesoscale Assembly of Biomacromolecular Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 13440-13444.	7.2	63
22	Preparation of Novel W/O Gel-Emulsions and Their Application in the Preparation of Low-Density Materials. Langmuir, 2012, 28, 9275-9281.	1.6	57
23	Novel Dimeric Cholesteryl Derivatives and Their Smart Thixotropic Gels. Langmuir, 2011, 27, 12156-12163.	1.6	56
24	Water-in-oil gel emulsions from a cholesterol derivative: Structure and unusual properties. Journal of Colloid and Interface Science, 2009, 336, 780-785.	5.0	51
25	Calix[4]arene-based supramolecular gels with unprecedented rheological properties. Soft Matter, 2012, 8, 3756.	1.2	49
26	New dicholesteryl-based gelators: gelling ability and selective gelation of organic solvents from their mixtures with water at room temperature. New Journal of Chemistry, 2008, 32, 2218.	1.4	47
27	Facile preparation of porous polymeric composite monoliths with superior performances in oil–water separation – a low-molecular mass gelators-based gel emulsion approach. Journal of Materials Chemistry A, 2014, 2, 10081-10089.	5.2	46
28	Spatially Confined Growth of Fullerene to Superâ€Long Crystalline Fibers in Supramolecular Gels for Highâ€Performance Photodetector. Advanced Materials, 2019, 31, e1808254.	11.1	42
29	Progress in the studies of low-molecular mass gelators with unusual properties. Science China Chemistry, 2011, 54, 575-586.	4.2	40
30	Triggered formation of thixotropic hydrogels by balancing competitive supramolecular synthons. Soft Matter, 2013, 9, 11699.	1.2	38
31	A high performance fluorescent arylamine sensor toward lung cancer sniffing. Sensors and Actuators B: Chemical, 2017, 241, 1316-1323.	4.0	36
32	Ag(I)-Coordinated Supramolecular Metallogels Based on Schiff Base Ligands: Structural Characterization and Reversible Thixotropic Property. Crystal Growth and Design, 2015, 15, 5360-5367.	1.4	35
33	Preparation of novel organometallic derivatives of cholesterol and their gel-formation properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362, 127-134.	2.3	32
34	Elastic, Persistently Moisture-Retentive, and Wearable Biomimetic Film Inspired by Fetal Scarless Repair for Promoting Skin Wound Healing. ACS Applied Materials & Interfaces, 2020, 12, 5542-5556.	4.0	32
35	Terthiophene Derivatives of Cholesterol-Based Molecular Gels and Their Sensing Applications. Langmuir, 2014, 30, 1257-1265.	1.6	31
36	Polymerizable organo-gelator-stabilized gel-emulsions toward the preparation of compressible porous polymeric monoliths. Journal of Materials Chemistry A, 2016, 4, 15215-15223.	5.2	31

#	Article	IF	CITATIONS
37	Salt Tunable Rheology of Thixotropic Supramolecular Organogels and Their Applications for Crystallization of Organic Semiconductors. Langmuir, 2016, 32, 12805-12813.	1.6	31
38	Spatial confinement and electron transfer moderating Mo N bond strength for superior ammonia decomposition catalysis. Applied Catalysis B: Environmental, 2021, 294, 120254.	10.8	31
39	Towards a new FRET system via combination of pyrene and perylene bisimide: synthesis, self-assembly and fluorescence behavior. Physical Chemistry Chemical Physics, 2015, 17, 5441-5449.	1.3	30
40	Novel dimeric cholesteryl-based A(LS)2 low-molecular-mass gelators with a benzene ring in the linker. Journal of Colloid and Interface Science, 2008, 327, 94-101.	5.0	29
41	New dimeric cholesteryl-based A(LS)2 gelators with remarkable gelling abilities: Organogel formation at room temperature. Journal of Colloid and Interface Science, 2011, 361, 556-564.	5.0	29
42	Solvatochromic Probes Displaying Unprecedented Organic Liquids Discriminating Characteristics. Analytical Chemistry, 2016, 88, 10167-10175.	3.2	29
43	Preparation and electro-response of chitosan-g-poly (acrylic acid) hydrogel elastomers with interpenetrating network. Materials Chemistry and Physics, 2016, 169, 105-112.	2.0	28
44	Ultrafine CoP/Co2P Nanorods Encapsulated in Janus/Twins-type Honeycomb 3D Nitrogen-Doped Carbon Nanosheets for Efficient Hydrogen Evolution. IScience, 2020, 23, 101264.	1.9	27
45	Gel-emulsion templated polymeric monoliths for efficient removal of particulate matters. Chemical Engineering Journal, 2018, 339, 14-21.	6.6	25
46	Gel–Emulsionâ€Templated Polymeric Aerogels for Water Treatment by Organic Liquid Removal and Solar Vapor Generation. ChemSusChem, 2020, 13, 749-755.	3.6	25
47	Polymerizable Nonconventional Gel Emulsions and Their Utilization in the Template Preparation of Low-Density, High-Strength Polymeric Monoliths and 3D Printing. Macromolecules, 2019, 52, 2456-2463.	2.2	24
48	Hierarchical Znâ€Doped CoO Nanoflowers for Electrocatalytic Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 1480-1486.	1.8	24
49	Supramolecular gels based on organic diacid monoamides of cholesteryl glycinate. Journal of Colloid and Interface Science, 2008, 327, 233-242.	5.0	23
50	Compressible porous hybrid monoliths: preparation via a low molecular mass gelators-based gel-emulsion approach and exceptional performances. Journal of Materials Chemistry A, 2015, 3, 24322-24332.	5.2	23
51	A novel calix[4]arene-based dimeric-cholesteryl derivative: synthesis, gelation and unusual properties. New Journal of Chemistry, 2015, 39, 639-649.	1.4	23
52	Gel-emulsion templated polymeric aerogels for solar-driven interfacial evaporation and electricity generation. Materials Chemistry Frontiers, 2021, 5, 1953-1961.	3.2	23
53	High-Performance Sensing of Formic Acid Vapor Enabled by a Newly Developed Nanofilm-Based Fluorescent Sensor. Analytical Chemistry, 2021, 93, 7094-7101.	3.2	23
54	Thermodynamics and Kinetics Synergetic Phase-Engineering of Chemical Vapor Deposition Grown Single Crystal MoTe ₂ Nanosheets. Crystal Growth and Design, 2018, 18, 2844-2850.	1.4	22

#	Article	IF	CITATIONS
55	Functionality-oriented molecular gels: synthesis and properties of nitrobenzoxadiazole (NBD)-containing low-molecular mass gelators. Soft Matter, 2014, 10, 9159-9166.	1.2	20
56	Calix[4]areneâ€Based Dynamic Covalent Gels: Marriage of Robustness, Responsiveness, and Selfâ€Healing. Macromolecular Rapid Communications, 2018, 39, 1700679.	2.0	20
57	Experimental Studies on A New Fluorescent Ensemble of Calix[4]pyrrole and Its Sensing Performance in the Film State. ACS Applied Materials & amp; Interfaces, 2016, 8, 29128-29135.	4.0	19
58	Dynamic Chemistry-Based Sensing: A Molecular System for Detection of Saccharide, Formaldehyde, and the Silver Ion. Analytical Chemistry, 2017, 89, 9360-9367.	3.2	19
59	Specially Treated Aramid Fiber Stabilized Gelâ€Emulsions: Preparation of Porous Polymeric Monoliths and Highly Efficient Removing of Airborne HCHO. Macromolecular Rapid Communications, 2017, 38, 1700270.	2.0	19
60	Transition metal pincer complex based self-healable, stretchable and transparent triboelecctric nanogenerator. Nano Energy, 2020, 78, 105348.	8.2	19
61	Strong Dynamic Interfacial Adhesion by Polymeric Ionic Liquids under Extreme Conditions. ACS Nano, 2022, 16, 5303-5315.	7.3	19
62	Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis. ACS Applied Materials & Interfaces, 2021, 13, 3336-3348.	4.0	18
63	Dynamic covalent bond-based hydrogels with superior compressive strength, exceptional slice-resistance and self-healing properties. Soft Matter, 2018, 14, 7950-7953.	1.2	17
64	Preparation and gas sensing properties of novel CdS-supramolecular organogel hybrid films. Journal Physics D: Applied Physics, 2008, 41, 105405.	1.3	16
65	Formation of An Ionic PTCA-β-CDNH ₂ Complex and Its Application for Phenol Sensing in Aqueous Phase. ACS Applied Materials & Interfaces, 2015, 7, 21364-21372.	4.0	16
66	Boronic ester-based dynamic covalent ionic liquid gels for self-healable, recyclable and malleable optical devices. Journal of Materials Chemistry C, 2018, 6, 12493-12497.	2.7	16
67	Solvent dispersion triggered the formation of NiFe-gel as an efficient electrocatalyst for enhancing the oxygen evolution reaction. Chemical Communications, 2020, 56, 7781-7784.	2.2	13
68	Calix[4]arene-based low molecular mass gelators to form gels in organoalkoxysilanes. RSC Advances, 2016, 6, 109969-109977.	1.7	10
69	Naphthyl Endâ€Capped Terthiopheneâ€Based Chemiresistive Sensors for Biogenic Amine Detection and Meat Spoilage Monitoring. Chemistry - an Asian Journal, 2019, 14, 2751-2758.	1.7	10
70	"Yin and Yang―Tuned Fluorescence Sensing Behavior of Branched 1,4-Bis(phenylethynyl)benzene. ACS Applied Materials & Interfaces, 2014, 6, 20016-20024.	4.0	9
71	A BPSON Algorithm Applied to DNA Codes Design. IEEE Access, 2019, 7, 88811-88821.	2.6	9
72	A New Type of 1, 4-Bis(phenylethynyl)benzene Derivatives: Optical Behavior and Sensing Applications. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 373-379.	2.2	8

KAIQIANG LIU

#	Article	IF	CITATIONS
73	Dynamic covalent bonding-triggered supramolecular gelation derived from tetrahydroxy-bisurea derivatives. Soft Matter, 2017, 13, 8609-8617.	1.2	8
74	A facile synthesis of cationic and super-hydrophobic polyHIPEs as precursors to carbon foam and adsorbents for removal of non-aqueous-phase dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125334.	2.3	8
75	Film Nanoarchitectonics of Pillar[5]arene for High-Performance Fluorescent Sensing: a Proof-of-Concept Study. ACS Applied Materials & Interfaces, 2021, 13, 54561-54569.	4.0	8
76	Harnessing Seî€N to develop novel fluorescent probes for visualizing the variation of endogenous hypobromous acid (HOBr) during the administration of an immunotherapeutic agent. Chemical Communications, 2021, 57, 12679-12682.	2.2	7
77	Water Splitting: Porous Nickel-Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction (Adv. Sci. 10/2015). Advanced Science, 2015, 2, .	5.6	6
78	Constitutional Dynamic Chemistry-based New Concept of Molecular Beacons for High Efficient Development of Fluorescent Probes. Journal of Physical Chemistry B, 2015, 119, 6721-6729.	1.2	6
79	Carbon Nanomeshes: Thinâ€Sheet Carbon Nanomesh with an Excellent Electrocapacitive Performance (Adv. Funct. Mater. 34/2015). Advanced Functional Materials, 2015, 25, 5406-5406.	7.8	5
80	Atomic Layers: Tellurium-Assisted Epitaxial Growth of Large-Area, Highly Crystalline ReS2 Atomic Layers on Mica Substrate (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5018-5018.	11.1	5
81	Tuning Crystallization Pathways through the Mesoscale Assembly of Biomacromolecular Nanocrystals. Angewandte Chemie, 2017, 129, 13625-13629.	1.6	5
82	Lilypad aggregation: localised self-assembly and metal sequestration at a liquid–vapour interface. Chemical Science, 2020, 11, 7501-7510.	3.7	5
83	Enhancement of Fe(III) to electro-response of starch hydrogel. Colloid and Polymer Science, 2020, 298, 1533-1541.	1.0	5
84	Tuning Rheological Behaviors of Supramolecular Aqueous Gels via Charge Transfer Interactions. Langmuir, 2021, 37, 14713-14723.	1.6	5
85	Preparation of a scorpion-shaped di-NBD derivative of cholesterol and its thixotropic property. Science China Chemistry, 2014, 57, 1544-1551.	4.2	4
86	An O-Carborane Derivative of Perylene Bisimide-Based Thin Film Displaying both Electrochromic and Electrofluorochromic Properties. ACS Applied Materials & Interfaces, 2021, 13, 49500-49508.	4.0	4
87	Synthesis and gelation behaviors of five new dimeric cholesteryl derivatives. Science China Chemistry, 2011, 54, 475-482.	4.2	3
88	Electrocatalysis: Hierarchical Co(OH)F Superstructure Built by Lowâ€Dimensional Substructures for Electrocatalytic Water Oxidation (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	11.1	0
89	Outstanding Reviewers for Soft Matter in 2017. Soft Matter, 2018, 14, 3220-3220.	1.2	0
90	Macromol. Rapid Commun. 4/2018. Macromolecular Rapid Communications, 2018, 39, 1870011.	2.0	0

#	Article	IF	CITATIONS
91	Supramolecular gel strategy-based nanomaterials with room temperature spin transition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 126016.	2.3	Ο