
Guang-Tao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9901988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small, 2015, 11, 6225-6236.	5.2	353
2	Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nature Communications, 2020, 11, 4909.	5.8	199
3	Platelet–Leukocyte Hybrid Membrane oated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells. Advanced Functional Materials, 2018, 28, 1803531.	7.8	154
4	Myeloidâ€Derived Suppressor Cell Membraneâ€Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death. Advanced Functional Materials, 2018, 28, 1801389.	7.8	140
5	Cancer Stem Cellâ€Platelet Hybrid Membraneâ€Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Advanced Functional Materials, 2019, 29, 1807733.	7.8	137
6	Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2017, 66, 627-636.	2.0	133
7	Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Molecular Cancer, 2017, 16, 99.	7.9	129
8	Blockade of TIGIT/CD155 Signaling Reverses T-cell Exhaustion and Enhances Antitumor Capability in Head and Neck Squamous Cell Carcinoma. Cancer Immunology Research, 2019, 7, 1700-1713.	1.6	126
9	Cancer Cell Membraneâ€Coated Nanoparticles for Personalized Therapy in Patientâ€Derived Xenograft Models. Advanced Functional Materials, 2019, 29, 1905671.	7.8	125
10	LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1239005.	2.1	108
11	PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma. Oncotarget, 2015, 6, 42067-42080.	0.8	95
12	NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2017, 36, 116.	3.5	89
13	NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Scientific Reports, 2016, 6, 24704.	1.6	76
14	T ell immunoglobulin mucin 3 blockade drives an antitumor immune response in head and neck cancer. Molecular Oncology, 2017, 11, 235-247.	2.1	65
15	CTLA4 blockade reduces immature myeloid cells in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1151594.	2.1	59
16	γ‣ecretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. International Journal of Cancer, 2018, 142, 999-1009.	2.3	59
17	B7-H4 expression indicates poor prognosis of oral squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2016, 65, 1035-1045.	2.0	58
18	Genetically Programmable Fusion Cellular Vesicles for Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 26320-26326.	7.2	55

Guang-Tao Yu

#	Article	IF	CITATIONS
19	Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. Oncolmmunology, 2018, 7, e1397248.	2.1	45
20	<scp>TRAF</scp> 6 regulates tumour metastasis through <scp>EMT</scp> and <scp>CSC</scp> phenotypes in head and neck squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2018, 22, 1337-1349.	1.6	44
21	Molecular Targeting Nanoprobes with Non-Overlap Emission in the Second Near-Infrared Window for <i>in Vivo</i> Two-Color Colocalization of Immune Cells. ACS Nano, 2019, 13, 12830-12839.	7.3	44
22	Selective blockade of B7â€H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2017, 21, 2199-2210.	1.6	43
23	Epidermal Growth Factor Receptor Inhibition Reduces Angiogenesis via Hypoxia-Inducible Factor-1α and Notch1 in Head Neck Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0119723.	1.1	41
24	Inhibition of SRC family kinases facilitates anti-CTLA4 immunotherapy in head and neck squamous cell carcinoma. Cellular and Molecular Life Sciences, 2018, 75, 4223-4234.	2.4	37
25	Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1130206.	2.1	32
26	Specific blockade <scp>CD</scp> 73 alters the "exhausted―phenotype of <scp>T</scp> cells in head and neck squamous cell carcinoma. International Journal of Cancer, 2018, 143, 1494-1504.	2.3	31
27	Inhibition of SRC family kinases reduces myeloidâ€derived suppressor cells in head and neck cancer. International Journal of Cancer, 2017, 140, 1173-1185.	2.3	30
28	Tumor growth suppression by inhibiting both autophagy and STAT3 signaling in HNSCC. Oncotarget, 2015, 6, 43581-43593.	0.8	28
29	Ferroptosis promotes antiâ€ŧumor immune response by inducing immunogenic exposure in HNSCC. Oral Diseases, 2023, 29, 933-941.	1.5	24
30	The Notch signaling pathway in head and neck squamous cell carcinoma: A meta-analysis. Advances in Clinical and Experimental Medicine, 2017, 26, 881-887.	0.6	23
31	LAIRâ€∃ overexpression and correlation with advanced pathological grade and immune suppressive status in oral squamous cell carcinoma. Head and Neck, 2019, 41, 1080-1086.	0.9	21
32	Prognostic and predictive values of SPP1, PAI and caveolin-1 in patients with oral squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 2014, 7, 6032-9.	0.5	19
33	Targeting phosphorylation of STAT3 delays tumor growth in HPV-negative anal squamous cell carcinoma mouse model. Scientific Reports, 2017, 7, 6629.	1.6	13
34	Inhibition of mTOR reduce Stat3 and PAI related angiogenesis in salivary gland adenoid cystic carcinoma. American Journal of Cancer Research, 2014, 4, 764-75.	1.4	12
35	Overexpression of FAM3C is associated with poor prognosis in oral squamous cell carcinoma. Pathology Research and Practice, 2019, 215, 772-778.	1.0	11
36	Notch signaling induces epithelial-mesenchymal transition to promote invasion and metastasis in adenoid cystic carcinoma. American Journal of Translational Research (discontinued), 2015, 7, 162-74.	0.0	10

Guang-Tao Yu

#	Article	IF	CITATIONS
37	PAK2 promotes migration and proliferation of salivary gland adenoid cystic carcinoma. American Journal of Translational Research (discontinued), 2016, 8, 3387-97.	0.0	8
38	Cancer Theranostics: Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death (Adv. Funct. Mater. 37/2018). Advanced Functional Materials, 2018, 28, 1870265.	7.8	4
39	Genome-Wide Enhancer Analysis Reveals the Role of AP-1 Transcription Factor in Head and Neck Squamous Cell Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 701531.	1.6	4
40	Overexpression of p21-activated kinase 2 is correlated with high-grade oral squamous cell carcinomas. Future Oncology, 2018, 14, 1091-1100.	1.1	2
41	Genetically Programmable Fusion Cellular Vesicles for Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 26524-26530.	1.6	2
42	Early Cancer Diagnosis: Platelet–Leukocyte Hybrid Membraneâ€Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells (Adv. Funct. Mater. 34/2018). Advanced Functional Materials, 2018, 28, 1870241.	7.8	1