Shangqian Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9901482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries. Nano Energy, 2022, 92, 106674.	8.2	36
2	Highly Stable Halideâ€Electrolyteâ€Based Allâ€Solidâ€State Li–Se Batteries. Advanced Materials, 2022, 34, e2200856.	11.1	50
3	A Series of Ternary Metal Chloride Superionic Conductors for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2022, 12, .	10.2	42
4	Solvent-Free Approach for Interweaving Freestanding and Ultrathin Inorganic Solid Electrolyte Membranes. ACS Energy Letters, 2022, 7, 410-416.	8.8	91
5	Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1003-1018.	2.4	7
6	Insight into Prolonged Cycling Life of 4 V Allâ€5olidâ€5tate Polymer Batteries by a Highâ€Voltage Stable Binder. Advanced Energy Materials, 2021, 11, .	10.2	52
7	Insight into cathode surface to boost the performance of solid-state batteries. Energy Storage Materials, 2021, 35, 661-668.	9.5	59
8	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solidâ€6tate Liâ€O ₂ Batteries. Angewandte Chemie - Internatic Edition, 2021, 60, 5821-5826.	nzla	47
9	Revealing the Local Cathodic Interfacial Chemism Inconsistency in a Practical Large-Sized Li–O2 Model Battery with High Energy Density to Underpin Its Key Cyclic Constraints. ACS Applied Materials & Interfaces, 2021, 13, 23853-23865.	4.0	3
10	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100210.	10.2	63
11	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	10.2	64
12	Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Liâ€Metal in Allâ€&olidâ€&tate Li Batteries. Advanced Energy Materials, 2021, 11, 2101915.	10.2	61
13	A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Science Advances, 2021, 7, eabh1896.	4.7	93
14	Progress and perspectives on typical inorganic solid-state electrolytes. Journal of Alloys and Compounds, 2021, 885, 161013.	2.8	42
15	An Airâ€Stable and Liâ€Metalâ€Compatible Glassâ€Ceramic Electrolyte enabling Highâ€Performance Allâ€Solidâ€ Li Metal Batteries. Advanced Materials, 2021, 33, e2006577.	State 11.1	82
16	Failure analysis of pouch-type Li–O2 batteries with superior energy density. Journal of Energy Chemistry, 2020, 45, 74-82.	7.1	33
17	3D Porous Garnet/Gel Polymer Hybrid Electrolyte for Safe Solid-State Li–O ₂ Batteries with Long Lifetimes. Chemistry of Materials, 2020, 32, 10113-10119.	3.2	39
18	Unraveling the Origin of Moisture Stability of Halide Solid-State Electrolytes by <i>In Situ</i> and <i>Operando</i> Synchrotron X-ray Analytical Techniques. Chemistry of Materials, 2020, 32, 7019-7027.	3.2	69

Shangqian Zhao

#	Article	IF	CITATIONS
19	Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy, 2020, 78, 105107.	8.2	88
20	Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries. Nano Energy, 2020, 77, 105097.	8.2	41
21	Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. Energy Storage Materials, 2020, 33, 139-146.	9.5	44
22	Origin of Superionic Li ₃ Y _{1–<i>x</i>} In _{<i>x</i>} Cl ₆ Halide Solid Electrolytes with High Humidity Tolerance. Nano Letters, 2020, 20, 4384-4392.	4.5	94
23	Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries. Energy Storage Materials, 2020, 30, 98-103.	9.5	109
24	Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy, 2020, 76, 105015.	8.2	80
25	Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li–O2 batteries. Nano Energy, 2020, 75, 105036.	8.2	45
26	Totally compatible P4S10+n cathodes with self-generated Li+ pathways for sulfide-based all-solid-state batteries. Energy Storage Materials, 2020, 28, 325-333.	9.5	17
27	Site-Occupation-Tuned Superionic Li _{<i>x</i>} ScCl _{3+<i>x</i>} Halide Solid Electrolytes for All-Solid-State Batteries. Journal of the American Chemical Society, 2020, 142, 7012-7022.	6.6	260
28	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	8.8	176
29	Principle understanding towards synthesizing Fe/N decorated carbon catalysts with pyridinic-N enriched and agglomeration-free features for lithium–oxygen batteries. RSC Advances, 2020, 10, 3853-3860.	1.7	2
30	A Versatile Sn‣ubstituted Argyrodite Sulfide Electrolyte for All‣olid‣tate Li Metal Batteries. Advanced Energy Materials, 2020, 10, 1903422.	10.2	183
31	Li ₁₀ Ge(P _{1–<i>x</i>} Sb <i>_x</i>) ₂ S ₁₂ Lithium-Ion Conductors with Enhanced Atmospheric Stability. Chemistry of Materials, 2020, 32, 2664-2672.	3.2	125
32	An Airâ€Stable and Dendriteâ€Free Li Anode for Highly Stable Allâ€Solidâ€State Sulfideâ€Based Li Batteries. Advanced Energy Materials, 2019, 9, 1902125.	10.2	133
33	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie, 2019, 131, 16579-16584.	1.6	92
34	Waterâ€Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 16427-16432.	7.2	232
35	Air-stable Li ₃ InCl ₆ electrolyte with high voltage compatibility for all-solid-state batteries. Energy and Environmental Science, 2019, 12, 2665-2671.	15.6	345
36	Engineering a "nanonet―reinforced polymer electrolyte for long-life Li–O2 batteries. Journal of Materials Chemistry A, 2019, 7, 24947-24952.	5.2	16

SHANGQIAN ZHAO

#	Article	IF	CITATIONS
37	Valley-polarized insulating states in zigzag silicene nanoribbons. Materials Research Express, 2014, 1, 045009.	0.8	14
38	Piezo-antiferromagnetic effect of sawtooth-like graphene nanoribbons. Applied Physics Letters, 2014, 104, .	1.5	3
39	Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors. Journal of Applied Physics, 2014, 115, 224503.	1.1	7
40	Excitonic effects of E11, E22, and E33 in armchair-edged graphene nanoribbons. Journal of Applied Physics, 2014, 115, 103701.	1.1	6