Pavla BojarovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/990132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent trends in the treatment of cyanide-containing effluents: Comparison of different approaches. Critical Reviews in Environmental Science and Technology, 2023, 53, 416-434.	12.8	14
2	2-Acetamido-2-deoxy-d-glucono-1,5-lactone Sulfonylhydrazones: Synthesis and Evaluation as Inhibitors of Human OGA and HexB Enzymes. International Journal of Molecular Sciences, 2022, 23, 1037.	4.1	2
3	Discovery of human hexosaminidase inhibitors by in situ screening of a library of mono- and divalent pyrrolidine iminosugars. Bioorganic Chemistry, 2022, 120, 105650.	4.1	10
4	Glycopolymers Decorated with 3- <i>O</i> -Substituted Thiodigalactosides as Potent Multivalent Inhibitors of Galectin-3. Journal of Medicinal Chemistry, 2022, 65, 3866-3878.	6.4	10
5	Methods of in vitro study of galectin-glycomaterial interaction. Biotechnology Advances, 2022, 58, 107928.	11.7	10
6	Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides. International Journal of Molecular Sciences, 2022, 23, 4106.	4.1	7
7	Diaminocyclopentane-derived <i>O</i> -GlcNAcase inhibitors for combating tau hyperphosphorylation in Alzheimer's disease. Chemical Communications, 2022, 58, 8838-8841.	4.1	4
8	Access to both anomers of rutinosyl azide using wild-type rutinosidase and its catalytic nucleophile mutant. Catalysis Communications, 2021, 149, 106193.	3.3	12
9	Growth Factors VEGF-A165 and FGF-2 as Multifunctional Biomolecules Governing Cell Adhesion and Proliferation. International Journal of Molecular Sciences, 2021, 22, 1843.	4.1	7
10	Interaction between Galectin-3 and Integrins Mediates Cell-Matrix Adhesion in Endothelial Cells and Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 5144.	4.1	19
11	Cross-Linking Effects Dictate the Preference of Galectins to Bind LacNAc-Decorated HPMA Copolymers. International Journal of Molecular Sciences, 2021, 22, 6000.	4.1	7
12	Reversible Lectin Binding to Glycan-Functionalized Graphene. International Journal of Molecular Sciences, 2021, 22, 6661.	4.1	1
13	Advanced glycosidases as ingenious biosynthetic instruments. Biotechnology Advances, 2021, 49, 107733.	11.7	24
14	Immunoprotective neo-glycoproteins: Chemoenzymatic synthesis of multivalent glycomimetics for inhibition of cancer-related galectin-3. European Journal of Medicinal Chemistry, 2021, 220, 113500.	5.5	19
15	Selectively Deoxyfluorinated <i>N</i> â€Acetyllactosamine Analogues as ¹⁹ F NMR Probes to Study Carbohydrateâ€Galectin Interactions. Chemistry - A European Journal, 2021, 27, 13040-13051.	3.3	8
16	Mutagenesis of Catalytic Nucleophile of βâ€Galactosidase Retains Residual Hydrolytic Activity and Affords a Transgalactosidase. ChemCatChem, 2021, 13, 4532-4542.	3.7	5
17	Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnology Advances, 2021, 51, 107820.	11.7	3
18	Application Potential of Cyanide Hydratase from Exidia glandulosa: Free Cyanide Removal from Simulated Industrial Effluents. Catalysts, 2021, 11, 1410.	3.5	5

Pavla BojarovÃi

#	Article	IF	CITATIONS
19	High-Affinity <i>N</i> -(2-Hydroxypropyl)methacrylamide Copolymers with Tailored <i>N</i> -Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules, 2020, 21, 641-652.	5.4	24
20	A novel enzymatic tool for transferring GalNAc moiety onto challenging acceptors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140319.	2.3	11
21	Transglycosidase activity of glycosynthase-type mutants of a fungal GH20 β-N-acetylhexosaminidase. International Journal of Biological Macromolecules, 2020, 161, 1206-1215.	7.5	9
22	How Siteâ€Directed Mutagenesis Boosted Selectivity of a Promiscuous Enzyme. Advanced Synthesis and Catalysis, 2020, 362, 4138-4150.	4.3	8
23	Glycopolymers for Efficient Inhibition of Galectin-3: <i>In Vitro</i> Proof of Efficacy Using Suppression of T Lymphocyte Apoptosis and Tumor Cell Migration. Biomacromolecules, 2020, 21, 3122-3133.	5.4	25
24	Dual Substrate Specificity of the Rutinosidase from Aspergillus niger and the Role of Its Substrate Tunnel. International Journal of Molecular Sciences, 2020, 21, 5671.	4.1	11
25	Biocatalysis: "A Jack of all Trades― International Journal of Molecular Sciences, 2020, 21, 5115.	4.1	1
26	Regioselective 3â€ <i>O</i> â€Substitution of Unprotected Thiodigalactosides: Direct Route to Galectin Inhibitors. Chemistry - A European Journal, 2020, 26, 9620-9631.	3.3	20
27	Rutinosidase from <i>Aspergillus niger</i> : crystal structure and insight into the enzymatic activity. FEBS Journal, 2020, 287, 3315-3327.	4.7	15
28	β-N-Acetylhexosaminidases—the wizards of glycosylation. Applied Microbiology and Biotechnology, 2019, 103, 7869-7881.	3.6	21
29	Bioproduction of Quercetin and Rutinose Catalyzed by Rutinosidase: Novel Concept of "Solid State Biocatalysis― International Journal of Molecular Sciences, 2019, 20, 1112.	4.1	28
30	Glycosidase atalyzed Synthesis of Glycosyl Esters and Phenolic Glycosides of Aromatic Acids. Advanced Synthesis and Catalysis, 2019, 361, 2627-2637.	4.3	14
31	The β-N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules, 2019, 24, 599.	3.8	25
32	Selective β-N-acetylhexosaminidase from Aspergillus versicolor—a tool for producing bioactive carbohydrates. Applied Microbiology and Biotechnology, 2019, 103, 1737-1753.	3.6	18
33	Acceptor Specificity of β-N-Acetylhexosaminidase from Talaromyces flavus: A Rational Explanation. International Journal of Molecular Sciences, 2019, 20, 6181.	4.1	13
34	Galectin–Carbohydrate Interactions in Biomedicine and Biotechnology. Trends in Biotechnology, 2019, 37, 402-415.	9.3	77
35	Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. Journal of Nanobiotechnology, 2018, 16, 73.	9.1	32
36	Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. International Journal of Molecular Sciences, 2018, 19, 372.	4.1	45

Pavla BojarovÃi

#	Article	IF	CITATIONS
37	Twoâ€Step Enzymatic Synthesis of βâ€ <scp>d</scp> â€ <i>N</i> â€Acetylgalactosamineâ€{1→4)â€ <scp>d</scp> â€ <i>N</i> â€acetylglucosamine (Chitooligomers for Deciphering Galectin Binding Behavior. Advanced Synthesis and Catalysis, 2017, 359, 2101-2108.	LaçdjNAc) 4.3	31
38	Engineered N-acetylhexosamine-active enzymes in glycoscience. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2070-2087.	2.4	22
39	Clycan-decorated HPMA copolymers as high-affinity lectin ligands. Polymer Chemistry, 2017, 8, 2647-2658.	3.9	30
40	Tailored Multivalent Neo-Glycoproteins: Synthesis, Evaluation, and Application of a Library of Galectin-3-Binding Glycan Ligands. Bioconjugate Chemistry, 2017, 28, 2832-2840.	3.6	54
41	Chemoâ€Enzymatic Synthesis of Branched <i>N</i> â€Acetyllactosamine Glycan Oligomers for Galectinâ€3 Inhibition. Advanced Synthesis and Catalysis, 2017, 359, 4015-4024.	4.3	11
42	Sugared biomaterial binding lectins: achievements and perspectives. Biomaterials Science, 2016, 4, 1142-1160.	5.4	66
43	Inhibition of ClcNAc-Processing Glycosidases by C-6-Azido-NAG-Thiazoline and Its Derivatives. Molecules, 2014, 19, 3471-3488.	3.8	13
44	Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 47-55.	1.8	26
45	Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: Recent advances. Biotechnology Advances, 2013, 31, 17-37.	11.7	14
46	Enzymatic glycosylation of multivalent scaffolds. Chemical Society Reviews, 2013, 42, 4774.	38.1	64
47	Sequencing, cloning and high-yield expression of a fungal β-N-acetylhexosaminidase in Pichia pastoris. Protein Expression and Purification, 2012, 82, 212-217.	1.3	26
48	Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry - A European Journal, 2012, 18, 10786-10801.	3.3	183
49	Glycosidases in Carbohydrate Synthesis: When Organic Chemistry Falls Short. Chimia, 2011, 65, 65-70.	0.6	28
50	Enzymatic characterization and molecular modeling of an evolutionarily interesting fungal βâ€ <i>N</i> â€acetylhexosaminidase. FEBS Journal, 2011, 278, 2469-2484.	4.7	34
51	Charged Hexosaminides as New Substrates for βâ€ <i>N</i> â€Acetylhexosaminidaseâ€Catalyzed Synthesis of Immunomodulatory Disaccharides. Advanced Synthesis and Catalysis, 2011, 353, 2409-2420.	4.3	33
52	Combinatorial Oneâ€Pot Synthesis of Polyâ€∢i>Nâ€acetyllactosamine Oligosaccharides with Leloirâ€Glycosyltransferases. Advanced Synthesis and Catalysis, 2011, 353, 2492-2500.	4.3	46
53	Enzymatic synthesis of dimeric glycomimetic ligands of NK cell activation receptors. Carbohydrate Research, 2011, 346, 1599-1609.	2.3	26
54	β-N-Acetylhexosaminidase: What's in a name…?. Biotechnology Advances, 2010, 28, 682-693.	11.7	138

Pavla BojarovÃi

#	Article	IF	CITATIONS
55	4-Deoxy-substrates for β-N-acetylhexosaminidases: How to make use of their loose specificity. Glycobiology, 2010, 20, 1002-1009.	2.5	36
56	Cooperation between Subunits Is Essential for High-Affinity Binding of <i>N</i> -Acetyl- <scp>d</scp> -hexosamines to Dimeric Soluble and Dimeric Cellular Forms of Human CD69. Biochemistry, 2010, 49, 4060-4067.	2.5	11
57	Synthesis of LacdiNAc-terminated glycoconjugates by mutant galactosyltransferase - A way to new glycodrugs and materials. Glycobiology, 2009, 19, 509-517.	2.5	29
58	Glycosidases: a key to tailored carbohydrates. Trends in Biotechnology, 2009, 27, 199-209.	9.3	152
59	Synthesis of Sulfated Glucosaminides for Profiling Substrate Specificities of Sulfatases and Fungal βâ€ <i>N</i> â€Acetylhexosaminidases. ChemBioChem, 2009, 10, 565-576.	2.6	21
60	Aryl sulfamates are broad spectrum inactivators of sulfatases: Effects on sulfatases from various sources. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 477-480.	2.2	9
61	Direct Evidence for ArOS Bond Cleavage upon Inactivation of <i>Pseudomonas aeruginosa</i> Arylsulfatase by Aryl Sulfamates. ChemBioChem, 2008, 9, 613-623.	2.6	29
62	Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination. Current Opinion in Chemical Biology, 2008, 12, 573-581.	6.1	91
63	N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-l²-d-galactopyranosyluronic acid residue into a complex oligosaccharide. Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 69-73.	1.8	25
64	Glycosyl Azides – An Alternative Way to Disaccharides. Advanced Synthesis and Catalysis, 2007, 349, 1514-1520.	4.3	30
65	Purification and characterization of a nitrilase from Aspergillus niger K10. Applied Microbiology and Biotechnology, 2006, 73, 567-575.	3.6	76
66	Cyanodeoxy-Glycosyl Derivatives as Substrates for Enzymatic Reactions. European Journal of Organic Chemistry, 2006, 2006, 1876-1885.	2.4	5
67	Glycosyl azide—a novel substrate for enzymatic transglycosylations. Tetrahedron Letters, 2005, 46, 8715-8718.	1.4	45
68	Combined Application of Galactose Oxidase and β-N-Acetylhexosaminidase in the Synthesis of Complex ImmunoactiveN-Acetyl-D-galactosaminides. Advanced Synthesis and Catalysis, 2005, 347, 997-1006.	4.3	32
69	β-N-Acetylhexosaminidase-catalysed synthesis of non-reducing oligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 2004, 29, 233-239.	1.8	19
70	Hydrolytic and transglycosylation reactions of N-acyl modified substrates catalysed by β-N-acetylhexosaminidases. Tetrahedron, 2004, 60, 693-701.	1.9	45
71	Azido leaving group in enzymatic synthesis-small and efficient. Carbohydrate Chemistry, 0, , 168-175.	0.3	2
72	Targeted fucosylation of glycans with engineered bacterial fucosyltransferase variants. ChemCatChem, 0, , .	3.7	2

#	ARTICLE	IF	CITATIONS
73	Hypertransglycosylating Variants of the GH20 βâ€Nâ€Acetylhexosaminidase for the Synthesis of Chitooligomers. Advanced Synthesis and Catalysis, 0, , .	4.3	2