Anna MarouÅ;kovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9901153/publications.pdf

Version: 2024-02-01

47 papers

1,509 citations

471509 17 h-index 345221 36 g-index

47 all docs

47 docs citations

47 times ranked

1591 citing authors

#	Article	IF	Citations
1	Economic impacts of soil fertility degradation by traces of iron from drinking water treatment. Environment, Development and Sustainability, 2022, 24, 4835-4844.	5.0	52
2	Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics. Polymers, 2022, 14, 266.	4.5	45
3	Shock Waves for Enhancing Extraction Yield. , 2021, , 439-443.		O
4	Residues from Water Precipitation via Ferric Hydroxide Threaten Soil Fertility. Sustainability, 2021, 13, 4327.	3.2	3
5	Determinants of Decarbonization—How to Realize Sustainable and Low Carbon Cities?. Energies, 2021, 14, 2640.	3.1	69
6	Intelligent Street Lighting in a Smart City Conceptsâ€"A Direction to Energy Saving in Cities: An Overview and Case Study. Energies, 2021, 14, 3018.	3.1	42
7	Economic Considerations on Nutrient Utilization in Wastewater Management. Energies, 2021, 14, 3468.	3.1	64
8	Advances in dry fermentation extends biowaste management possibilities. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 212-218.	2.3	3
9	Techno-Economic Assessment: Food Emulsion Waste Management. Energies, 2020, 13, 4922.	3.1	13
10	Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. Journal of Cleaner Production, 2020, 272, 123015.	9.3	111
11	Ferrous sludge from water clarification: Changes in waste management practices advisable. Journal of Cleaner Production, 2019, 218, 459-464.	9.3	99
12	Charred fermentation residues accelerate methanogenesis and sorb air pollutants. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 301-305.	2.3	9
13	Updated energy policy of the Czech Republic may result in instability of the electricity grid in Central Europe. Clean Technologies and Environmental Policy, 2018, 20, 41-52.	4.1	8
14	Intracellular disintegration by shockwave pretreatment accelerates "dry fermentation― Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 716-720.	2.3	7
15	Economic, Environmental and Moral Acceptance of Renewable Energy: A Case Study—The Agricultural Biogas Plant at PÄ∕ÄĀn. Science and Engineering Ethics, 2018, 24, 299-305.	2.9	15
16	Uncovering a New Moral Dilemma of Economic Optimization in Biotechnological Processing. Science and Engineering Ethics, 2018, 24, 1331-1338.	2.9	1
17	Valuation of New Inhibitors Detection Method. Waste and Biomass Valorization, 2018, 9, 1243-1246.	3.4	3
18	Techno - economic analysis of fermentation residues management places a question mark against current practices. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 721-726.	2.3	5

#	Article	IF	CITATIONS
19	Postponing of the intracellular disintegration step improves efficiency of phytomass processing. Journal of Cleaner Production, 2018, 199, 173-176.	9.3	60
20	Biochar reduces nitrate level in red beet. Environmental Science and Pollution Research, 2018, 25, 18200-18203.	5.3	51
21	Economic aspects of carbon management in sewage sludge treatment. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 485-490.	2.3	3
22	Assessment of shockwave pretreatment in biomass processing. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 1195-1199.	2.3	3
23	Moral Polemics of Far-Reaching Economic Consequences of Antibiotics Overuse. Science and Engineering Ethics, 2017, 23, 1035-1040.	2.9	1
24	Valuation of fermentation residues from biogas stations. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 905-910.	2.3	2
25	Obsolete Laws: Economic and Moral Aspects, Case Study—Composting Standards. Science and Engineering Ethics, 2017, 23, 1667-1672.	2.9	13
26	Alternatives for the use of solid pyrolysis by-products for electricity generation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 1875-1878.	2.3	1
27	Novel method for cultivating beetroot reduces nitrate content. Journal of Cleaner Production, 2017, 168, 60-62.	9.3	52
28	Daphnia magna demonstrated sufficient sensitivity in techno-economic optimization of lignocellulose bioethanol production. 3 Biotech, 2017, 7, 162.	2.2	1
29	Implications of the EU green energy policy on financial performance of crop production and water management of topsoil. Clean Technologies and Environmental Policy, 2017, 19, 603-609.	4.1	4
30	Techno-economic appraisal of waste cellulose processing. Clean Technologies and Environmental Policy, 2016, 18, 1233-1237.	4.1	1
31	Economic and environmental aspects of steam-explosion pretreatment. Waste and Biomass Valorization, 2016, 7, 1549-1554.	3.4	14
32	Biochar pricing hampers biochar farming. Clean Technologies and Environmental Policy, 2016, 18, 1225-1231.	4.1	74
33	Advances in economically driven optimization of processing of biosolids from sewage sludge. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2413-2417.	2.3	3
34	The economic impact of biochar use in Central Europe. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2390-2396.	2.3	6
35	Appraisal of changes in sewage sludge management. International Journal of Environmental Science and Technology, 2016, 13, 1607-1614.	3.5	3
36	Techno-economic analysis of waste paper energy utilization. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3459-3463.	2.3	10

#	Article	IF	CITATION
37	Energy recovery and economy aspects of steam-explosion pretreatment in waste phytomass management. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3332-3337.	2.3	0
38	Reengineering the paper mill waste management. Clean Technologies and Environmental Policy, 2016, 18, 323-329.	4.1	28
39	Polemics on Ethical Aspects in the Compost Business. Science and Engineering Ethics, 2016, 22, 581-590.	2.9	59
40	Analysis of Czech Subsidies for Solid Biofuels. International Journal of Green Energy, 2015, 12, 405-408.	3.8	294
41	Techno-economic assessment of collagen casings waste management. International Journal of Environmental Science and Technology, 2015, 12, 3385-3390.	3.5	45
42	Financial and Biotechnological Assessment of New Oil Extraction Technology. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 1723-1728.	2.3	48
43	Techno-economic assessment of processing the cellulose casings waste. Clean Technologies and Environmental Policy, 2015, 17, 2441-2446.	4.1	44
44	Shower cooler reduces pollutants release in production of competitive cement substitute at low cost. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-10.	2.3	37
45	Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-10.	2.3	58
46	Advances in the agrochemical utilization of fermentation residues reduce the cost of purpose-grown phytomass for biogas production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0 , 0 , 1 - 1 1.	2.3	43
47	Changes in soil water retention following biochar amendment. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-9.	2.3	2