
Yanpeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9901055/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31, 686-688.	17.5	1,657
2	Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32, 947-951.	17.5	1,635
3	CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annual Review of Plant Biology, 2019, 70, 667-697.	18.7	959
4	Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8, 14261.	12.8	751
5	Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7, 12617.	12.8	710
6	Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 2017, 35, 438-440.	17.5	690
7	Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 2014, 9, 2395-2410.	12.0	627
8	Prime genome editing in rice and wheat. Nature Biotechnology, 2020, 38, 582-585.	17.5	544
9	Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019, 364, 292-295.	12.6	491
10	Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology, 2018, 19, 59.	8.8	392
11	Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nature Plants, 2015, 1, 15144.	9.3	337
12	Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 2018, 36, 950-953.	17.5	310
13	Highâ€efficiency gene targeting in hexaploid wheat using <scp>DNA</scp> replicons and <scp>CRISPR</scp> /Cas9. Plant Journal, 2017, 89, 1251-1262.	5.7	305
14	Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs. Molecular Plant, 2013, 6, 1365-1368.	8.3	245
15	High-efficiency prime editing with optimized, paired pegRNAs in plants. Nature Biotechnology, 2021, 39, 923-927.	17.5	189
16	Genome-edited powdery mildew resistance in wheat without growth penalties. Nature, 2022, 602, 455-460.	27.8	181
17	WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant, 2021, 14, 1965-1968.	8.3	166
18	Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity. Molecular Cell, 2020, 79, 728-740.e6.	9.7	104

YANPENG WANG

#	Article	IF	CITATIONS
19	An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 2022, 40, 1394-1402.	17.5	89
20	Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Molecular Plant, 2021, 14, 1787-1798.	8.3	85
21	Manipulating gene translation in plants by CRISPR–Cas9-mediated genome editing of upstream open reading frames. Nature Protocols, 2020, 15, 338-363.	12.0	48
22	SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biology, 2020, 21, 141.	8.8	38
23	Genome editing in plants with MAD7 nuclease. Journal of Genetics and Genomics, 2021, 48, 444-451.	3.9	25
24	Identification and characterization of <i>Sr22b</i> , a new allele of the wheat stem rust resistance gene <i>Sr22</i> effective against the Ug99 race group. Plant Biotechnology Journal, 2022, 20, 554-563.	8.3	17
25	The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat. Plant Biotechnology Journal, 2021, 19, 1863-1877.	8.3	15
26	Genomeâ€wide identification of seed storage protein gene regulators in wheat through coexpression analysis. Plant Journal, 2021, 108, 1704-1720.	5.7	9
27	Targeted Mutagenesis in Hexaploid Bread Wheat Using the TALEN and CRISPR/Cas Systems. Methods in Molecular Biology, 2017, 1679, 169-185.	0.9	7