
Jinyi Zhang, å¼ é‡æ‡

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9901047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorescent Carbon Dots for Highly Efficient Oxygen Photosensitization and as Photo-oxidative Nanozymes. ACS Applied Materials & amp; Interfaces, 2018, 10, 40808-40814.	8.0	192
2	Manganese as a Catalytic Mediator for Photo-oxidation and Breaking the pH Limitation of Nanozymes. Nano Letters, 2019, 19, 3214-3220.	9.1	161
3	Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. TrAC - Trends in Analytical Chemistry, 2019, 110, 183-190.	11.4	155
4	Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale, 2020, 12, 2914-2923.	5.6	112
5	Lanthanide-Boosted Singlet Oxygen from Diverse Photosensitizers along with Potent Photocatalytic Oxidation. ACS Nano, 2019, 13, 14152-14161.	14.6	80
6	Highly efficient oxygen photosensitization of carbon dots: the role of nitrogen doping. Nanoscale, 2020, 12, 5543-5553.	5.6	72
7	Sensing during In Situ Growth of Mnâ€Doped ZnS QDs: A Phosphorescent Sensor for Detection of H ₂ S in Biological Samples. Chemistry - A European Journal, 2014, 20, 952-956.	3.3	69
8	Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots. Analytical Chemistry, 2018, 90, 2939-2945.	6.5	63
9	Modulation of the Singlet Oxygen Generation from the Double Strand DNA-SYBR Green I Complex Mediated by T-Melamine-T Mismatch for Visual Detection of Melamine. Analytical Chemistry, 2017, 89, 5101-5106.	6.5	58
10	Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Research, 2020, 13, 455-460.	10.4	57
11	Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase. Nanoscale, 2017, 9, 15606-15611.	5.6	52
12	Analyte-Activable Probe for Protease Based on Cytochrome C-Capped Mn: ZnS Quantum Dots. Analytical Chemistry, 2014, 86, 10078-10083.	6.5	51
13	Nanomaterials in speciation analysis of mercury, arsenic, selenium, and chromium by analytical atomic/molecular spectrometry. Applied Spectroscopy Reviews, 2018, 53, 333-348.	6.7	51
14	Facile colorimetric sensing of Pb 2+ using bimetallic lanthanide metal-organic frameworks as luminescent probe for field screen analysis of lead-polluted environmental water. Microchemical Journal, 2017, 134, 140-145.	4.5	43
15	Selection of a metal ligand modified DNAzyme for detecting Ni2+. Biosensors and Bioelectronics, 2020, 165, 112285.	10.1	34
16	Photo-modulated nanozymes for biosensing and biomedical applications. Analytical Methods, 2019, 11, 5081-5088.	2.7	33
17	Nano g-C3N4/TiO2 composite: A highly efficient photocatalyst for selenium (VI) photochemical vapor generation for its ultrasensitive AFS determination. Microchemical Journal, 2017, 135, 158-162.	4.5	30
18	Optical sensing at the nanobiointerface of metal ion–optically-active nanocrystals. Nanoscale, 2018, 10, 5035-5046.	5.6	30

JINYI ZHANG, żÉ‡'Ƈ¿

#	Article	IF	CITATIONS
19	Nanozymeâ€based luminescence detection. Luminescence, 2020, 35, 1185-1194.	2.9	26
20	Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots. Nanoscale, 2018, 10, 8477-8482.	5.6	25
21	Self-photo-oxidation for extending visible light absorption of carbon dots and oxidase-like activity. Carbon, 2021, 182, 537-544.	10.3	25
22	Glucose oxidase-directed, instant synthesis of Mn-doped ZnS quantum dots in neutral media with retained enzymatic activity: mechanistic study and biosensing application. Journal of Materials Chemistry B, 2015, 3, 5942-5950.	5.8	24
23	Photosensitization of Molecular Oxygen on Graphene Oxide for Ultrasensitive Signal Amplification. Chemistry - A European Journal, 2018, 24, 2602-2608.	3.3	22
24	In Situ Fabrication of Nanoceria with Oxidase-like Activity at Neutral pH: Mechanism and Boosted Bio-Nanozyme Cascades. ACS Applied Materials & Interfaces, 2021, 13, 50236-50245.	8.0	21
25	Nucleoside-based fluorescent carbon dots for discrimination of metal ions. Journal of Materials Chemistry B, 2020, 8, 3640-3646.	5.8	18
26	Aggregation-induced phosphorescence enhancement of Mn-doped ZnS quantum dots: the role of dot-to-dot distance. Nanoscale, 2018, 10, 9236-9244.	5.6	15
27	Adsorption Promoted Aggregation-Induced Emission Showing Strong Dye Lateral Interactions. Langmuir, 2019, 35, 16304-16311.	3.5	8
28	Orthogonal Adsorption of Carbon Dots and DNA on Nanoceria. Langmuir, 2020, 36, 2474-2481.	3.5	8