Yongzhuo Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/989557/publications.pdf

Version: 2024-02-01

138 papers 8,362 citations

47 h-index

46918

85 g-index

148 all docs

148 docs citations

148 times ranked

11538 citing authors

#	Article	IF	CITATIONS
1	Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1145-1162.	5 . 7	529
2	Blood–Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery <i>via</i> Albumin-Binding Protein Pathways for Antiglioma Therapy. ACS Nano, 2016, 10, 9999-10012.	7.3	384
3	The Endotoxin Delivery Protein HMGB1 Mediates Caspase-11-Dependent Lethality in Sepsis. Immunity, 2018, 49, 740-753.e7.	6.6	377
4	Macrophage-Membrane-Coated Nanoparticles for Tumor-Targeted Chemotherapy. Nano Letters, 2018, 18, 1908-1915.	4.5	289
5	Fusogenic Reactive Oxygen Species Triggered Chargeâ€Reversal Vector for Effective Gene Delivery. Advanced Materials, 2016, 28, 1743-1752.	11.1	288
6	The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials, 2009, 30, 4716-4722.	5.7	274
7	Intracellularly Acid-Switchable Multifunctional Micelles for Combinational Photo/Chemotherapy of the Drug-Resistant Tumor. ACS Nano, 2016, 10, 3496-3508.	7.3	267
8	Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Advanced Drug Delivery Reviews, 2015, 81, 142-160.	6.6	208
9	Dual-targeting biomimetic delivery for anti-glioma activity <i>via</i> remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chemical Science, 2018, 9, 2674-2689.	3.7	196
10	Dual-Targeting Magnetic PLGA Nanoparticles for Codelivery of Paclitaxel and Curcumin for Brain Tumor Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32159-32169.	4.0	184
11	TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials, 2012, 33, 6155-6161.	5 . 7	182
12	Curb challenges of the "Trojan Horse―approach: Smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Advanced Drug Delivery Reviews, 2013, 65, 1299-1315.	6.6	175
13	Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials, 2010, 31, 9086-9091.	5 . 7	172
14	Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin \hat{l}^2 3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics, 2019, 9, 265-278.	4.6	141
15	Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (\hat{l}^2 -amino ester) nanoparticles co-delivering two siRNA and paclitaxel. Biomaterials, 2015, 48, 1-15.	5 . 7	134
16	Reprogramming Tumor Immune Microenvironment (TIME) and Metabolism via Biomimetic Targeting Codelivery of Shikonin/JQ1. Nano Letters, 2019, 19, 2935-2944.	4.5	134
17	Dualâ€Targeting to Cancer Cells and M2 Macrophages via Biomimetic Delivery of Mannosylated Albumin Nanoparticles for Drugâ€Resistant Cancer Therapy. Advanced Functional Materials, 2017, 27, 1700403.	7.8	118
18	Co-delivery of doxorubicin and RNA using pH-sensitive poly (\hat{l}^2 -amino ester) nanoparticles for reversal of multidrug resistance of breast cancer. Biomaterials, 2014, 35, 6047-6059.	5.7	113

#	Article	IF	Citations
19	Disulfiram Copper Nanoparticles Prepared with a Stabilized Metal Ion Ligand Complex Method for Treating Drug-Resistant Prostate Cancers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41118-41128.	4.0	109
20	Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biology and Medicine, 2017, 14, 212.	1.4	98
21	Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer. Journal of Controlled Release, 2014, 192, 47-56.	4.8	93
22	Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. Journal of Controlled Release, 2012, 161, 884-892.	4.8	91
23	Reprogramming Tumor-Associated Macrophages To Reverse EGFR ^{T790M} Resistance by Dual-Targeting Codelivery of Gefitinib/Vorinostat. Nano Letters, 2017, 17, 7684-7690.	4.5	90
24	Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacologica Sinica, 2017, 38, 885-896.	2.8	87
25	Co-Delivery of Trichosanthin and Albendazole by Nano-Self-Assembly for Overcoming Tumor Multidrug-Resistance and Metastasis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26648-26664.	4.0	86
26	Codelivery of Sorafenib and Curcumin by Directed Self-Assembled Nanoparticles Enhances Therapeutic Effect on Hepatocellular Carcinoma. Molecular Pharmaceutics, 2015, 12, 922-931.	2.3	82
27	Macrophage-based nanotherapeutic strategies in ulcerative colitis. Journal of Controlled Release, 2020, 320, 363-380.	4.8	82
28	Glioma selectivity of magnetically targeted nanoparticles: A role of abnormal tumor hydrodynamics. Journal of Controlled Release, 2007, 122, 315-323.	4.8	80
29	Epirubicin-Loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: Cancer Therapy by Circumventing the Skin Barrier. Small, 2015, 11, 239-247.	5.2	73
30	Albumin Biomimetic Nanocorona Improves Tumor Targeting and Penetration for Synergistic Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2017, 27, 1605679.	7.8	73
31	Doxorubicin and Lapatinib Combination Nanomedicine for Treating Resistant Breast Cancer. Molecular Pharmaceutics, 2014, 11, 2600-2611.	2.3	72
32	Metabolic modulation via mTOR pathway and anti-angiogenesis remodels tumor microenvironment using PD-L1-targeting codelivery. Biomaterials, 2020, 255, 120187.	5.7	72
33	Biomimetic albumin-modified gold nanorods for photothermo-chemotherapy and macrophage polarization modulation. Acta Pharmaceutica Sinica B, 2018, 8, 74-84.	5.7	70
34	Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery., 2020, 8, e000207.		70
35	PEGylated synthetic surfactant vesicles (Niosomes): novel carriers for oligonucleotides. Journal of Materials Science: Materials in Medicine, 2008, 19, 607-614.	1.7	68
36	The magnetophoretic mobility and superparamagnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality. Biomaterials, 2010, 31, 5842-5848.	5.7	67

#	Article	IF	Citations
37	Combination therapy based on nano codelivery for overcoming cancer drug resistance. Medicine in Drug Discovery, 2020, 6, 100024.	2.3	66
38	A Prodrug-type, MMP-2-targeting Nanoprobe for Tumor Detection and Imaging. Theranostics, 2015, 5, 787-795.	4.6	61
39	Remodeling Tumorâ€Associated Macrophages and Neovascularization Overcomes EGFR ^{T790M} â€Associated Drug Resistance by PD‣1 Nanobodyâ€Mediated Codelivery. Small, 2018 14, e1802372.	,5.2	60
40	The use of low molecular weight protamine chemical chimera to enhance monomeric insulin intestinal absorption. Biomaterials, 2013, 34, 7733-7743.	5.7	59
41	Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharmaceutica Sinica B, 2016, 6, 352-358.	5.7	59
42	Intein-mediated site-specific synthesis of tumor-targeting protein delivery system: Turning PEG dilemma into prodrug-like feature. Biomaterials, 2017, 116, 57-68.	5.7	57
43	Targeting death receptors for drug-resistant cancer therapy: Codelivery of pTRAIL and monensin using dual-targeting and stimuli-responsive self-assembling nanocomposites. Biomaterials, 2018, 158, 56-73.	5.7	57
44	Roles of Albuminâ€Binding Proteins in Cancer Progression and Biomimetic Targeted Drug Delivery. ChemBioChem, 2018, 19, 1796-1805.	1.3	57
45	A Trojan horse biomimetic delivery strategy using mesenchymal stem cells for PDT/PTT therapy against lung melanoma metastasis. Biomaterials Science, 2020, 8, 1160-1170.	2.6	52
46	BBB-penetrating codelivery liposomes treat brain metastasis of non-small cell lung cancer with EGFR ^{T790M} mutation. Theranostics, 2020, 10, 6122-6135.	4.6	52
47	Microneedle-Assisted, DC-Targeted Codelivery of pTRP-2 and Adjuvant of Paclitaxel for Transcutaneous Immunotherapy. Small, 2017, 13, 1700666.	5.2	50
48	Liposomal Codelivery of Doxorubicin and Andrographolide Inhibits Breast Cancer Growth and Metastasis. Molecular Pharmaceutics, 2018, 15, 1618-1626.	2.3	49
49	Antiglioma via regulating oxidative stress and remodeling tumor-associated macrophage using lactoferrin-mediated biomimetic codelivery of simvastatin/fenretinide. Journal of Controlled Release, 2018, 287, 12-23.	4.8	49
50	Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods. Nanoscale Research Letters, 2015, 10, 1018.	3.1	48
51	Synthetic Skinâ€Permeable Proteins Enabling Needleless Immunization. Angewandte Chemie - International Edition, 2010, 49, 2724-2727.	7.2	47
52	Cell-penetrating peptide-modified PLGA nanoparticles for enhanced nose-to-brain macromolecular delivery. Macromolecular Research, 2013, 21, 435-441.	1.0	47
53	Natural Brain Penetration Enhancer-Modified Albumin Nanoparticles for Glioma Targeting Delivery. ACS Applied Materials & Interfaces, 2018, 10, 30201-30213.	4.0	47
54	Lactoferrin-mediated macrophage targeting delivery and patchouli alcohol-based therapeutic strategy for inflammatory bowel diseases. Acta Pharmaceutica Sinica B, 2020, 10, 1966-1976.	5.7	46

#	Article	IF	CITATIONS
55	Magnetic Nanoparticles for Tumor Imaging and Therapy: A So-Called Theranostic System. Pharmaceutical Research, 2013, 30, 2445-2458.	1.7	45
56	Microneedle-assisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polymer Chemistry, 2015, 6, 373-379.	1.9	45
57	Identification of Epigallocatechin-3- Gallate as an Inhibitor of Phosphoglycerate Mutase 1. Frontiers in Pharmacology, 2017, 8, 325.	1.6	45
58	Glioma Dual-Targeting Nanohybrid Protein Toxin Constructed by Intein-Mediated Site-Specific Ligation for Multistage Booster Delivery. Theranostics, 2017, 7, 3489-3503.	4.6	43
59	TRAIL-based gene delivery and therapeutic strategies. Acta Pharmacologica Sinica, 2019, 40, 1373-1385.	2.8	42
60	High-Yield Synthesis of Monomeric LMWP(CPP)-siRNA Covalent Conjugate for Effective Cytosolic Delivery of siRNA. Theranostics, 2017, 7, 2495-2508.	4.6	40
61	Preparation and Characterization of Liposomes Encapsulating Chitosan Nanoparticles. Biological and Pharmaceutical Bulletin, 2005, 28, 387-390.	0.6	39
62	Prodrug-Like, PEGylated Protein Toxin Trichosanthin for Reversal of Chemoresistance. Molecular Pharmaceutics, 2017, 14, 1429-1438.	2.3	39
63	Tat-functionalized Ag-Fe3O4 nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery. Acta Pharmaceutica Sinica B, 2018, 8, 956-968.	5.7	38
64	Magnetism-mediated targeting hyperthermia-immunotherapy in "cold―tumor with CSF1R inhibitor. Theranostics, 2021, 11, 6860-6872.	4.6	36
65	ATTEMPTS System: A Macromolecular Prodrug Strategy for Cancer Drug Delivery. Current Pharmaceutical Design, 2010, 16, 2369-2376.	0.9	35
66	Polysorbate cationic synthetic vesicle for gene delivery. Journal of Biomedical Materials Research - Part A, 2011, 96A, 513-519.	2.1	35
67	Magnetic Nanoparticles for MRI of Brain Tumors. Current Pharmaceutical Biotechnology, 2012, 13, 2403-2416.	0.9	35
68	Cell-Penetrating Apoptotic Peptide/p53 DNA Nanocomplex as Adjuvant Therapy for Drug-Resistant Breast Cancer. Molecular Pharmaceutics, 2014, 11 , 3352-3360.	2.3	35
69	Disulfiram-loaded lactoferrin nanoparticles for treating inflammatory diseases. Acta Pharmacologica Sinica, 2021, 42, 1913-1920.	2.8	33
70	Cationic liposomes modified with non-ionic surfactants as effective non-viral carrier for gene transfer. Colloids and Surfaces B: Biointerfaces, 2006, 49, 158-164.	2.5	31
71	Alginate–Chitosan–PLGA Composite Microspheres Enabling Single-Shot Hepatitis B Vaccination. AAPS Journal, 2010, 12, 519-524.	2.2	30
72	Green synthesis of hyaluronic acid-based silver nanoparticles and their enhanced delivery to CD44 ⁺ cancer cells. RSC Advances, 2015, 5, 43733-43740.	1.7	30

#	Article	IF	CITATIONS
73	Biomimetic metal-organic nanoparticles prepared with a 3D-printed microfluidic device as a novel formulation for disulfiram-based therapy against breast cancer. Applied Materials Today, 2020, 18, 100492.	2.3	29
74	Cell-penetrating albumin conjugates for enhanced doxorubicin delivery. Polymer Chemistry, 2013, 4, 4584.	1.9	27
75	A mannosylated PEI–CPP hybrid for TRAIL gene targeting delivery for colorectal cancer therapy. Polymer Chemistry, 2017, 8, 5275-5285.	1.9	27
76	Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity. Journal of Controlled Release, 2021, 329, 1249-1261.	4.8	27
77	In vivo delivery of cell-permeable antisense hypoxia-inducible factor $1\hat{l}\pm$ oligonucleotide to adipose tissue reduces adiposity in obese mice. Journal of Controlled Release, 2012, 161, 1-9.	4.8	26
78	Molecularâ€Dynamicsâ€Simulationâ€Driven Design of a Proteaseâ€Responsive Probe for Inâ€Vivo Tumor Imaging Advanced Materials, 2014, 26, 8174-8178.	^{5.} 11.1	26
79	Proteaseâ€Activatable Hybrid Nanoprobe for Tumor Imaging. Advanced Functional Materials, 2014, 24, 5443-5453.	7.8	26
80	Recombinant TAT-gelonin fusion toxin: Synthesis and characterization of heparin/protamine-regulated cell transduction. Journal of Biomedical Materials Research - Part A, 2015, 103, 409-419.	2.1	26
81	Skin-permeable quaternary nanoparticles with layer-by-layer structure enabling improved gene delivery. Journal of Materials Chemistry, 2012, 22, 10029.	6.7	25
82	Neutralization of SARS-CoV-2 pseudovirus using ACE2-engineered extracellular vesicles. Acta Pharmaceutica Sinica B, 2022, 12, 1523-1533.	5.7	25
83	PTD-Modified ATTEMPTS for Enhanced Toxin-based Cancer Therapy: An In Vivo Proof-of-Concept Study. Pharmaceutical Research, 2015, 32, 2690-703.	1.7	24
84	Preparation and Characterization of Gelonin-Melittin Fusion Biotoxin for Synergistically Enhanced Anti-Tumor Activity. Pharmaceutical Research, 2016, 33, 2218-2228.	1.7	24
85	Menthol-modified BSA nanoparticles for glioma targeting therapy using an energy restriction strategy. NPG Asia Materials, 2019, 11, .	3.8	24
86	Remodeling "cold―tumor immune microenvironment via epigenetic-based therapy using targeted liposomes with in situ formed albumin corona. Acta Pharmaceutica Sinica B, 2022, 12, 2057-2073.	5.7	24
87	A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel disease. Journal of Nanobiotechnology, 2022, 20, 107.	4.2	24
88	Poly-Î ³ -glutamic acid-based GGT-targeting and surface camouflage strategy for improving cervical cancer gene therapy. Journal of Materials Chemistry B, 2017, 5, 1315-1327.	2.9	23
89	Anti-PD-L1 mediating tumor-targeted codelivery of liposomal irinotecan/JQ1 for chemo-immunotherapy. Acta Pharmacologica Sinica, 2021, 42, 1516-1523.	2.8	23
90	An in situ-forming, solid lipid/PLGA hybrid implant for long-acting antipsychotics. Soft Matter, 2011, 7, 5873.	1.2	22

#	Article	IF	Citations
91	Nano-Structural Effects on Gene Transfection: Large, Botryoid-Shaped Nanoparticles Enhance DNA Delivery via Macropinocytosis and Effective Dissociation. Theranostics, 2019, 9, 1580-1598.	4.6	22
92	Nuclear-targeting TAT-PEG-Asp8-doxorubicin polymeric nanoassembly to overcome drug-resistant colon cancer. Acta Pharmacologica Sinica, 2016, 37, 1110-1120.	2.8	21
93	Cell-penetrating peptide-based non-invasive topical delivery systems. Journal of Pharmaceutical Investigation, 2018, 48, 77-87.	2.7	21
94	Nanotechnology-Based Histone Deacetylase Inhibitors for Cancer Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 400.	1.8	21
95	The ATTEMPTS delivery systems for macromolecular drugs. Expert Opinion on Drug Delivery, 2008, 5, 1255-1266.	2.4	20
96	Specific down regulation of 3T3-L1 adipocyte differentiation by cell-permeable antisense HIF1α-oligonucleotide. Journal of Controlled Release, 2010, 144, 82-90.	4.8	20
97	Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites. Frontiers of Chemical Science and Engineering, 2013, 7, 9-19.	2.3	20
98	Application of Monodisperse PEGs in Pharmaceutics: Monodisperse Polidocanols. Molecular Pharmaceutics, 2017, 14, 3473-3479.	2.3	20
99	Improved method for synthesis of low molecular weight protamine–siRNA conjugate. Acta Pharmaceutica Sinica B, 2018, 8, 116-126.	5.7	20
100	Transcutaneous delivery of DNA/mRNA for cancer therapeutic vaccination. Journal of Gene Medicine, 2019, 21, e3089.	1.4	19
101	Biomimetic camouflage delivery strategies for cancer therapy. Nanoscale, 2021, 13, 8693-8706.	2.8	19
102	Remodeling immune microenvironment in periodontitis using resveratrol liposomes as an antibiotic-free therapeutic strategy. Journal of Nanobiotechnology, 2021, 19, 429.	4.2	19
103	Smart Cell-Penetrating Peptide-Based Techniques for Intracellular Delivery of Therapeutic Macromolecules. Advances in Protein Chemistry and Structural Biology, 2018, 112, 183-220.	1.0	18
104	Genetically-engineered protein prodrug-like nanoconjugates for tumor-targeting biomimetic delivery <i>via</i> a SHEATH strategy. Nanoscale, 2019, 11, 611-621.	2.8	18
105	Advances on Tumor-Targeting Delivery of Cytotoxic Proteins. ACS Pharmacology and Translational Science, 2020, 3, 107-118.	2.5	18
106	Cell-Penetrating Peptide-Mediated Topical Delivery of Biomacromolecular Drugs. Current Pharmaceutical Biotechnology, 2014, 15, 231-239.	0.9	18
107	A novel tumor-targeting treatment strategy uses energy restriction via co-delivery of albendazole and nanosilver. Nano Research, 2018, 11, 4507-4523.	5.8	17
108	A hybrid thermo-sensitive chitosan gel for sustained release of Meloxicam. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1239-1247.	1.9	16

#	Article	IF	CITATIONS
109	Recombinant cancer nanovaccine for targeting tumor-associated macrophage and remodeling tumor microenvironment. Nano Today, 2021, 40, 101244.	6.2	16
110	Downregulation of survivin expression and enhanced chemosensitivity of MCF-7 cells to adriamycin by PDMAE/survivin shRNA complex nanoparticles. International Journal of Pharmaceutics, 2011, 405, 188-195.	2.6	15
111	Coâ€delivery of Cellâ€permeable Chimeric Apoptosis AVPIR ₈ Peptide/p53 DNA for Cocktail Therapy. Advanced Functional Materials, 2013, 23, 6068-6075.	7.8	15
112	Pluronic L61 as a long-circulating modifier for enhanced liposomal delivery of cancer drugs. Polymer Chemistry, 2013, 4, 2958.	1.9	14
113	Teaching new tricks to old dogs: A review of drug repositioning of disulfiram for cancer nanomedicine. View, 2021, 2, 20200127.	2.7	14
114	Tandem-multimeric F3-gelonin fusion toxins for enhanced anti-cancer activity for prostate cancer treatment. International Journal of Pharmaceutics, 2017, 524, 101-110.	2.6	12
115	CPP-mediated Protein Delivery in a Noncovalent Form: Proof-of-Concept for Percutaneous and Intranasal Delivery. Protein and Peptide Letters, 2014, 21, 1129-1136.	0.4	12
116	Brain-targeting biomimetic nanoparticles for codelivery of celastrol and LY2157299 for reversing glioma immunosuppression. International Journal of Pharmaceutics, 2022, 619, 121709.	2.6	12
117	Anti-alcoholism drug disulfiram for targeting glioma energy metabolism using BBB-penetrating delivery of fixed-dose combination. Nano Today, 2022, 44, 101448.	6.2	12
118	Gene Delivery: Fusogenic Reactive Oxygen Species Triggered Chargeâ€Reversal Vector for Effective Gene Delivery (Adv. Mater. 9/2016). Advanced Materials, 2016, 28, 1714-1714.	11.1	11
119	Deformable liposomal codelivery of vorinostat and simvastatin promotes antitumor responses through remodeling tumor microenvironment. Biomaterials Science, 2020, 8, 7166-7176.	2.6	11
120	Improved Protein Toxin Delivery Based on ATTEMPTS Systems. Current Drug Targets, 2018, 19, 380-392.	1.0	11
121	Inhaled heparin polysaccharide nanodecoy against SARS-CoV-2 and variants. Acta Pharmaceutica Sinica B, 2022, 12, 3187-3194.	5.7	11
122	An injectable hybrid nanoparticle-in-oil-in-water submicron emulsion for improved delivery of poorly soluble drugs. Nanoscale Research Letters, 2012, 7, 219.	3.1	10
123	Template synthesis of PMAA@chitosan hollow nanorods for docetaxel delivery. Polymer Chemistry, 2013, 4, 2489.	1.9	10
124	Heparin-Regulated Prodrug-Type Macromolecular Theranostic Systems for Cancer Therapy. Nanotheranostics, 2017, 1, 114-130.	2.7	10
125	Genetically-engineered "all-in-one―vaccine platform for cancer immunotherapy. Acta Pharmaceutica Sinica B, 2021, 11, 3622-3635.	5.7	9
126	Drug Delivery and Reversal of MDR. Molecular Pharmaceutics, 2014, 11, 2493-2494.	2.3	8

#	Article	IF	CITATIONS
127	Trained Macrophage Bioreactor for Penetrating Delivery of Fused Antitumor Protein. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23018-23025.	4.0	8
128	Nanotherapeutic macrophage-based immunotherapy for the peritoneal carcinomatosis of lung cancer. Nanoscale, 2022, 14, 2304-2315.	2.8	8
129	Low molecular weight protamine/insulin formulation with potential to attenuate protamine-masqueraded insulin allergy. Macromolecular Research, 2011, 19, 1224-1226.	1.0	7
130	The intra-brain distribution of brain targeting delivery systems. , 2019, , 409-438.		7
131	Ultrasound-mediated targeted microbubbles: a new vehicle for cancer therapy. Frontiers of Chemical Science and Engineering, 2013, 7, 20-28.	2.3	6
132	Bioreducible Micelles with Endosomal Buffering and Multidrug Resistance-Reversing Function Enhance Anti-Tumor Efficacy of Doxorubicin. Journal of Biomedical Nanotechnology, 2015, 11, 1764-1775.	0.5	6
133	Lipid Metabolism Regulation Based on Nanotechnology for Enhancement of Tumor Immunity. Frontiers in Pharmacology, 2022, 13, 840440.	1.6	6
134	Editorial (Thematic Issue: "Cell-penetrating Peptides and Drug Deliveryâ€). Current Pharmaceutical Biotechnology, 2014, 15, 191-191.	0.9	4
135	Cancer nanobiotechnolgy. Acta Pharmacologica Sinica, 2017, 38, 735-737.	2.8	4
136	Advances on Delivery of Cytotoxic Enzymes as Anticancer Agents. Molecules, 2022, 27, 3836.	1.7	2
137	Nanotechnology-based targeted drug delivery systems and drug resistance in colorectal cancer. , 2020, , 173-198.		1
138	Introduction to biomimetic therapeutics. Biomaterials Science, 2020, 8, 1017-1019.	2.6	0