Benedikt Asbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9893250/publications.pdf

Version: 2024-02-01

20 330 10 papers citations h-index

23

docs citations

23

all docs

h-index g-index

23 519
times ranked citing authors

888059

17

#	Article	IF	CITATIONS
1	A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	58
2	Brk/Protein Tyrosine Kinase 6 Phosphorylates p27 ^{KIP1} , Regulating the Activity of Cyclin D–Cyclin-Dependent Kinase 4. Molecular and Cellular Biology, 2015, 35, 1506-1522.	2.3	41
3	SARS-CoV-2 Spike Protein Stabilized in the Closed State Induces Potent Neutralizing Responses. Journal of Virology, 2021, 95, e0020321.	3.4	35
4	Priming with a Potent HIV-1 DNA Vaccine Frames the Quality of Immune Responses prior to a Poxvirus and Protein Boost. Journal of Virology, 2019, 93, .	3.4	25
5	Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens. Journal of Virology, 2016, 90, 4133-4149.	3.4	22
6	Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS ONE, 2016, 11, e0153484.	2.5	20
7	Comprehensive Analysis of Interactions between the Src-Associated Protein in Mitosis of 68 kDa and the Human Src-Homology 3 Proteome. PLoS ONE, 2012, 7, e38540.	2.5	17
8	Antibodies against viral nucleo-, phospho-, and X protein contribute to serological diagnosis of fatal Borna disease virus 1 infections. Cell Reports Medicine, 2022, 3, 100499.	6.5	16
9	Interplay of Promoter Usage and Intragenic CpG Content: Impact on GFP Reporter Gene Expression. Human Gene Therapy, 2015, 26, 826-840.	2.7	14
10	Coronavirus Pseudotypes for All Circulating Human Coronaviruses for Quantification of Cross-Neutralizing Antibody Responses. Viruses, 2021, 13, 1579.	3.3	14
11	Replication-Competent NYVAC-KC Yields Improved Immunogenicity to HIV-1 Antigens in Rhesus Macaques Compared to Nonreplicating NYVAC. Journal of Virology, 2019, 93, .	3.4	13
12	Heterologous Combination of VSV-GP and NYVAC Vectors Expressing HIV-1 Trimeric gp145 Env as Vaccination Strategy to Induce Balanced B and T Cell Immune Responses. Frontiers in Immunology, 2019, 10, 2941.	4.8	9
13	Exploiting Pan Influenza A and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection. Vaccines, 2021, 9, 741.	4.4	9
14	Comparative Immunogenicity of COVID-19 Vaccines in a Population-Based Cohort Study with SARS-CoV-2-Infected and Uninfected Participants. Vaccines, 2022, 10, 324.	4.4	9
15	Protein microarray assay for the screening of SH3 domain interactions. Analytical and Bioanalytical Chemistry, 2010, 398, 1937-1946.	3.7	7
16	Vaccine vectors based on Adenovirus 19a/64 exhibit broad cellular tropism and potently restimulate HCMV-specific T cell responses ex vivo. Scientific Reports, 2018, 8, 1474.	3.3	7
17	Computational Design of Epitope-Enriched HIV-1 Gag Antigens with Preserved Structure and Function for Induction of Broad CD8+ T Cell Responses. Scientific Reports, 2018, 8, 11264.	3.3	3
18	Design and Immunological Validation of Macaca fascicularis Papillomavirus Type 3 Based Vaccine Candidates in Outbred Mice: Basis for Future Testing of a Therapeutic Papillomavirus Vaccine in NHPs. Frontiers in Immunology, 2021, 12, 761214.	4.8	3

#	:	Article	IF	CITATIONS
19	9	Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors. Journal of Virology, 2018, 92, .	3.4	2
2	O	The HIV 5′ Gag Region Displays a Specific Nucleotide Bias Regulating Viral Splicing and Infectivity. Viruses, 2021, 13, 997.	3.3	0