Qiao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9892645/publications.pdf

Version: 2024-02-01

		516561	677027
23	3,927	16	22
papers	citations	h-index	g-index
23	23	23	3690
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stimuliâ€Responsive DNA Origami Nanodevices and Their Biological Applications. ChemMedChem, 2022, 17,	1.6	17
2	Regulation of Biological Functions at the Cell Interface by DNA Nanostructures. Advanced NanoBiomed Research, 2022, 2, 2100126.	1.7	2
3	A DNAâ€Based Plasmonic Nanodevice for Cascade Signal Amplification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
4	A DNAâ€Based Plasmonic Nanodevice for Cascade Signal Amplification. Angewandte Chemie, 2022, 134, .	1.6	5
5	A Tubular DNA Nanodevice as a siRNA/Chemoâ€Drug Coâ€delivery Vehicle for Combined Cancer Therapy. Angewandte Chemie, 2021, 133, 2626-2630.	1.6	14
6	A Tubular DNA Nanodevice as a siRNA/Chemoâ€Drug Coâ€delivery Vehicle for Combined Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 2594-2598.	7.2	128
7	A DNA nanodevice-based vaccine for cancer immunotherapy. Nature Materials, 2021, 20, 421-430.	13.3	320
8	A DNA origami-based aptamer nanoarray for potent and reversible anticoagulation in hemodialysis. Nature Communications, 2021, 12, 358.	5 . 8	69
9	Logic-Gated Plasmonic Nanodevices Based on DNA-Templated Assembly. CCS Chemistry, 2021, 3, 985-993.	4.6	15
10	Logic devices based on nucleic acid selfâ€assembly. InformaÄnÃ-Materiály, 2021, 3, 1070-1082.	8 . 5	8
11	Rationally Designed DNA Assemblies for Biomedical Application. , 2020, , 287-310.		0
12	Efficient Intracellular Delivery of RNase A Using DNA Origami Carriers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11112-11118.	4.0	74
13	Rationally designed DNA-based nanocarriers. Advanced Drug Delivery Reviews, 2019, 147, 2-21.	6.6	77
14	Rationally Designed DNAâ€Origami Nanomaterials for Drug Delivery In Vivo. Advanced Materials, 2019, 31, e1804785.	11.1	138
15	A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 2018, 36, 258-264.	9.4	1,066
16	A DNA-Based Nanocarrier for Efficient Gene Delivery and Combined Cancer Therapy. Nano Letters, 2018, 18, 3328-3334.	4.5	216
17	A Tailored DNA Nanoplatform for Synergistic RNAiâ€∤Chemotherapy of Multidrugâ€Resistant Tumors. Angewandte Chemie, 2018, 130, 15712-15716.	1.6	29
18	A Tailored DNA Nanoplatform for Synergistic RNAiâ€∤Chemotherapy of Multidrugâ€Resistant Tumors. Angewandte Chemie - International Edition, 2018, 57, 15486-15490.	7.2	157

QIAO JIANG

#	Article	IF	CITATIONS
19	Self-Assembled DNA Dendrimer Nanoparticle for Efficient Delivery of Immunostimulatory CpG Motifs. ACS Applied Materials & Emp; Interfaces, 2017, 9, 20324-20329.	4.0	89
20	Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami. Nano Letters, 2017, 17, 7125-7130.	4.5	109
21	DNAâ€Nanostructure–Goldâ€Nanorod Hybrids for Enhanced In Vivo Optoacoustic Imaging and Photothermal Therapy. Advanced Materials, 2016, 28, 10000-10007.	11.1	185
22	DNA Origami as an <i>In Vivo</i> Drug Delivery Vehicle for Cancer Therapy. ACS Nano, 2014, 8, 6633-6643.	7.3	534
23	DNA Origami as a Carrier for Circumvention of Drug Resistance. Journal of the American Chemical Society, 2012, 134, 13396-13403.	6.6	653