duanquan Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9892623/publications.pdf

Version: 2024-02-01

840776 1199594 14 619 11 12 citations h-index g-index papers 14 14 14 503 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The impact of pH on mechanical properties, storage stability and digestion of alginate-based and soy protein isolate-stabilized emulsion gel beads with encapsulated lycopene. Food Chemistry, 2022, 372, 131262.	8.2	26
2	Influence of acidification or alkalization followed by neutralization on dissolution and acid gelation ability of MPI. Food Hydrocolloids, 2021, 113, 106422.	10.7	3
3	Effect of structuring emulsion gels by whey or soy protein isolate on the structure, mechanical properties, and in-vitro digestion of alginate-based emulsion gel beads. Food Hydrocolloids, 2021, 110, 106165.	10.7	77
4	The role of mixing sequence in structuring O/W emulsions and emulsion gels produced by electrostatic protein-polysaccharide interactions between soy protein isolate-coated droplets and alginate molecules. Food Hydrocolloids, 2021, 113, 106537.	10.7	30
5	Alginate-based emulsion micro-gel particles produced by an external/internal O/W/O emulsion-gelation method: Formation, suspension rheology, digestion, and application to gel-in-gel beads. Food Hydrocolloids, 2021, 120, 106926.	10.7	15
6	Formation and creaming stability of alginate/micro-gel particle-induced gel-like emulsions stabilized by soy protein isolate. Food Hydrocolloids, 2021, 121, 107040.	10.7	17
7	Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends in Food Science and Technology, 2020, 102, 123-137.	15.1	142
8	Effect of concentrations of alginate, soy protein isolate and sunflower oil on water loss, shrinkage, elastic and structural properties of alginate-based emulsion gel beads during gelation. Food Hydrocolloids, 2020, 108, 105998.	10.7	43
9	Monoglycerides: Categories, Structures, Properties, Preparations, and Applications in the Food Industry., 2019, , 155-163.		8
10	Effect of plant protein mixtures on the microstructure and rheological properties of myofibrillar protein gel derived from red sea bream (Pagrosomus major). Food Hydrocolloids, 2019, 96, 537-545.	10.7	70
11	Tribological analyses for the evaluation of food quality. , 2019, , 559-578.		1
12	Glass transition, structural relaxation and stability of spray-dried amorphous food solids: A review. Drying Technology, 2019, 37, 287-300.	3.1	40
13	Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry. Trends in Food Science and Technology, 2017, 68, 130-144.	15.1	104
14	In Vitro Antioxidant Activity and In Vivo Anti-Fatigue Effect of Sea Horse (Hippocampus) Peptides. Molecules, 2017, 22, 482.	3.8	43