Guang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9892312/publications.pdf

Version: 2024-02-01

81743 223531 6,780 47 39 46 h-index citations g-index papers 47 47 47 6582 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced efficiency and stability of tripleâ€cation perovskite solar cells with CsPbl _{<i>x</i>} Br _{3 ⰳ <i>x</i>} QDs "surface patchesâ€. SmartMat, 2022, 3,	513-521.	22
2	Gradient Doping in Sn–Pb Perovskites by Barium Ions for Efficient Singleâ€Junction and Tandem Solar Cells. Advanced Materials, 2022, 34, e2110351.	11.1	62
3	Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nature Energy, 2022, 7, 65-73.	19.8	158
4	Pathways to High Efficiency Perovskite Monolithic Solar Modules. , 2022, 1, .		5
5	Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nature Photonics, 2022, 16, 588-594.	15.6	112
6	Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nature Photonics, 2021, 15, 681-689.	15.6	255
7	Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules. Science Advances, 2021, 7, eabi8249.	4.7	71
8	Reconfiguration of Interfacial and Bulk Energy Band Structure for Highâ€Performance Organic and Thermal–Stability Enhanced Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900482.	3.1	16
9	Blade-Coated Perovskites on Textured Silicon for 26%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells. Joule, 2020, 4, 850-864.	11.7	281
10	Potassium-intercalated rubrene as a dual-functional passivation agent for high efficiency perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 1824-1834.	5.2	59
11	Achieving High Open-Circuit Voltage on Planar Perovskite Solar Cells via Chlorine-Doped Tin Oxide Electron Transport Layers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23152-23159.	4.0	89
12	Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency. Nano Energy, 2019, 63, 103835.	8.2	51
13	Vacuum-free fabrication of high-performance semitransparent perovskite solar cells via e-glue assisted lamination process. Science China Chemistry, 2019, 62, 875-882.	4.2	7
14	Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy, 2019, 61, 141-147.	8.2	152
15	Manipulating the Mixedâ€Perovskite Crystallization Pathway Unveiled by In Situ GIWAXS. Advanced Materials, 2019, 31, e1901284.	11.1	127
16	Effective Carrierâ€Concentration Tuning of SnO ₂ Quantum Dot Electronâ€Selective Layers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706023.	11.1	333
17	Tin oxide (SnO2) as effective electron selective layer material in hybrid organic–inorganic metal halide perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 962-970.	7.1	39
18	Stable and Efficient Organoâ€Metal Halide Hybrid Perovskite Solar Cells via π onjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Advanced Materials, 2018, 30, e1706126.	11.1	241

#	Article	IF	CITATIONS
19	Fully Highâ€Temperatureâ€Processed SnO ₂ as Blocking Layer and Scaffold for Efficient, Stable, and Hysteresisâ€Free Mesoporous Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706276.	7.8	143
20	A Lewis Baseâ€Assisted Passivation Strategy Towards Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800055.	3.1	83
21	Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells. Applied Surface Science, 2018, 434, 1336-1343.	3.1	49
22	Metal ions diffusion at heterojunction chromium Oxide/CH 3 NH 3 PbI 3 interface on the stability of perovskite solar cells. Surfaces and Interfaces, 2018, 10, 93-99.	1.5	31
23	Review on the Application of SnO ₂ in Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1802757.	7.8	448
24	MgO Nanoparticle Modified Anode for Highly Efficient SnO ₂ â€Based Planar Perovskite Solar Cells. Advanced Science, 2017, 4, 1700031.	5.6	175
25	Incorporation of High-Mobility and Room-Temperature-Deposited Cu _{<i>x</i>} S as a Hole Transport Layer for Efficient and Stable Organo-Lead Halide Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700038.	3.1	51
26	Single phase, high hole mobility Cu ₂ O films as an efficient and robust hole transporting layer for organic solar cells. Journal of Materials Chemistry A, 2017, 5, 11055-11062.	5.2	65
27	Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer. Nano Energy, 2017, 38, 1-11.	8.2	65
28	Self-powered narrowband $\langle i \rangle p \langle i \rangle -NiO/\langle i \rangle n \langle i \rangle -ZnO$ nanowire ultraviolet photodetector with interface modification of Al2O3. Applied Physics Letters, 2017, 110, .	1.5	49
29	Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application. Journal of Power Sources, 2017, 351, 123-129.	4.0	71
30	Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement. Journal of Materials Chemistry A, 2017, 5, 1658-1666.	5.2	364
31	Octamethyl-substituted Pd(<scp>ii</scp>) phthalocyanine with long carrier lifetime as a dopant-free hole selective material for performance enhancement of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24416-24424.	5.2	45
32	Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10280-10287.	2.7	15
33	Highly Efficient and Stable Planar Perovskite Solar Cells With Largeâ€Scale Manufacture of Eâ€Beam Evaporated SnO ₂ Toward Commercialization. Solar Rrl, 2017, 1, 1700118.	3.1	75
34	High-Performance Rigid and Flexible Perovskite Solar Cells with Low-Temperature Solution-Processable Binary Metal Oxide Hole-Transporting Materials. Solar Rrl, 2017, 1, 1700058.	3.1	69
35	Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Lowâ€√emperature Processed Yâ€Doped SnO ₂ Nanosheets as Electron Selective Layers. Small, 2017, 13, 1601769.	5.2	183
36	A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability. Nano Energy, 2017, 31, 322-330.	8.2	117

#	Article	IF	CITATIONS
37	Enhanced Stability of Perovskite Solar Cells with Lowâ€Temperature Hydrothermally Grown SnO ₂ Electron Transport Layers. Advanced Functional Materials, 2016, 26, 6069-6075.	7.8	154
38	Copperâ€Doped Chromium Oxide Holeâ€Transporting Layer for Perovskite Solar Cells: Interface Engineering and Performance Improvement. Advanced Materials Interfaces, 2016, 3, 1500799.	1.9	72
39	Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2016, 680, 109-115.	2.8	68
40	Performance enhancement of high temperature SnO ₂ -based planar perovskite solar cells: electrical characterization and understanding of the mechanism. Journal of Materials Chemistry A, 2016, 4, 8374-8383.	5.2	156
41	Improved performance in Ag ₂ S/P3HT hybrid solar cells with a solution processed SnO ₂ electron transport layer. RSC Advances, 2016, 6, 77701-77708.	1.7	19
42	Efficient planar Sb ₂ S ₃ solar cells using a low-temperature solution-processed tin oxide electron conductor. Physical Chemistry Chemical Physics, 2016, 18, 16436-16443.	1.3	86
43	Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3970-3990.	5 . 2	472
44	Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers. ACS Applied Materials & Diterfaces, 2016, 8, 8460-8466.	4.0	128
45	Perovskite solar cell based on network nanoporous layer consisted of TiO2 nanowires and its interface optimization. Journal of Power Sources, 2015, 290, 144-152.	4.0	44
46	Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 6730-6733.	6.6	1,045
47	Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature Communications, 2015, 6, 6700.	5.8	358