
## Liangming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9891302/publications.pdf Version: 2024-02-01



LIANCMINGLU

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Protective Effect of Moderate Hypotonic Fluid on Organ Dysfunction via Alleviating Lethal Triad<br>Following Seawater Immersion With Hemorrhagic Shock in Rats. Frontiers in Physiology, 2022, 13,<br>827838.                                        | 2.8 | 1         |
| 2  | The Landscape of Featured Metabolism-Related Genes and Imbalanced Immune Cell Subsets in Sepsis.<br>Frontiers in Genetics, 2022, 13, 821275.                                                                                                         | 2.3 | 8         |
| 3  | N-Acetyl-L-Cysteine Protects Organ Function After Hemorrhagic Shock Combined With Seawater<br>Immersion in Rats by Correcting Coagulopathy and Acidosis. Frontiers in Physiology, 2022, 13, 831514.                                                  | 2.8 | 1         |
| 4  | Protective Effects of Dexmedetomidine on the Vascular Endothelial Barrier Function by Inhibiting<br>Mitochondrial Fission via ER/Mitochondria Contact. Frontiers in Cell and Developmental Biology,<br>2021, 9, 636327.                              | 3.7 | 13        |
| 5  | Mesenchymal stem cell-derived microvesicles improve intestinal barrier function by restoring mitochondrial dynamic balance in sepsis rats. Stem Cell Research and Therapy, 2021, 12, 299.                                                            | 5.5 | 11        |
| 6  | A Novel Cross-Linked Hemoglobin-Based Oxygen Carrier, YQ23, Extended the Golden Hour for<br>Uncontrolled Hemorrhagic Shock in Rats and Miniature Pigs. Frontiers in Pharmacology, 2021, 12,<br>652716.                                               | 3.5 | 5         |
| 7  | Protective Effects of Inhibition of Mitochondrial Fission on Organ Function After Sepsis. Frontiers in Pharmacology, 2021, 12, 712489.                                                                                                               | 3.5 | 13        |
| 8  | Mitochondrial Drp1 recognizes and induces excessive mPTP opening after hypoxia through BAX-PiC and LRRK2-HK2. Cell Death and Disease, 2021, 12, 1050.                                                                                                | 6.3 | 29        |
| 9  | The protective effects of pericyte-derived microvesicles on vascular endothelial functions via CTGF delivery in sepsis. Cell Communication and Signaling, 2021, 19, 115.                                                                             | 6.5 | 5         |
| 10 | Protective Effects of Dexmedetomidine on Sepsis-Induced Vascular Leakage by Alleviating Ferroptosis<br>via Regulating Metabolic Reprogramming. Journal of Inflammation Research, 2021, Volume 14, 6765-6782.                                         | 3.5 | 26        |
| 11 | Mdivi-1 attenuates oxidative stress and exerts vascular protection in ischemic/hypoxic injury by a mechanism independent of Drp1 GTPase activity. Redox Biology, 2020, 37, 101706.                                                                   | 9.0 | 47        |
| 12 | Endothelial Microvesicles Induce Pulmonary Vascular Leakage and Lung Injury During Sepsis.<br>Frontiers in Cell and Developmental Biology, 2020, 8, 643.                                                                                             | 3.7 | 14        |
| 13 | The Calcilytic Drug Calhex-231 Ameliorates Vascular Hyporesponsiveness in Traumatic Hemorrhagic<br>Shock by Inhibiting Oxidative Stress and miR-208a-Mediated Mitochondrial Fission. Oxidative Medicine<br>and Cellular Longevity, 2020, 2020, 1-13. | 4.0 | 5         |
| 14 | Mitochondrial-Derived Vesicles Protect Cardiomyocytes Against Hypoxic Damage. Frontiers in Cell and<br>Developmental Biology, 2020, 8, 214.                                                                                                          | 3.7 | 39        |
| 15 | The Beneficial Effect of HES on Vascular Permeability and Its Relationship With Endothelial Clycocalyx and Intercellular Junction After Hemorrhagic Shock. Frontiers in Pharmacology, 2020, 11, 597.                                                 | 3.5 | 20        |
| 16 | Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via<br>Clec16a-, BAX-, and GSH- pathways. Cell Death and Disease, 2020, 11, 251.                                                                             | 6.3 | 44        |
| 17 | Activated Drp1-mediated mitochondrial ROS influence the gut microbiome and intestinal barrier after hemorrhagic shock. Aging, 2020, 12, 1397-1416.                                                                                                   | 3.1 | 38        |
| 18 | miRNA-mRNA crosstalk in myocardial ischemia induced by calcified aortic valve stenosis. Aging, 2019, 11,<br>448-466.                                                                                                                                 | 3.1 | 13        |

LIANGMING LIU

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A novel cross-linked haemoglobin-based oxygen carrier is beneficial to sepsis in rats. Artificial Cells,<br>Nanomedicine and Biotechnology, 2019, 47, 1496-1504.                                                                                                      | 2.8 | 13        |
| 20 | Role of Tumor Necrosis Factor-α in vascular hyporeactivity following endotoxic shock and its<br>mechanism. Journal of Trauma and Acute Care Surgery, 2019, 87, 1346-1353.                                                                                             | 2.1 | 4         |
| 21 | ERK and miRNA-1 target Cx43 expression and phosphorylation to modulate the vascular protective effect of angiotensin II. Life Sciences, 2019, 216, 59-66.                                                                                                             | 4.3 | 12        |
| 22 | Relationship of Cx43 regulation of vascular permeability to osteopontin-tight junction protein<br>pathway after sepsis in rats. American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2018, 314, R1-R11.                             | 1.8 | 24        |
| 23 | Beneficial effects of novel cross-linked hemoglobin YQ23 on hemorrhagic shock in rats and pigs.<br>Journal of Surgical Research, 2017, 210, 213-222.                                                                                                                  | 1.6 | 6         |
| 24 | Involvement of connexin 43 phosphorylation and gap junctional communication between smooth<br>muscle cells in vasopressin-induced ROCK-dependent vasoconstriction after hemorrhagic shock.<br>American Journal of Physiology - Cell Physiology, 2017, 313, C362-C370. | 4.6 | 21        |
| 25 | Myoendothelial gap junctions mediate regulation of angiopoietin-2-induced vascular hyporeactivity<br>after hypoxia through connexin 43-gated cAMP transfer. American Journal of Physiology - Cell<br>Physiology, 2017, 313, C262-C273.                                | 4.6 | 13        |
| 26 | Early outcome of early-goal directed therapy for patients with sepsis or septic shock: a systematic review and meta-analysis of randomized controlled trials. Oncotarget, 2017, 8, 27510-27519.                                                                       | 1.8 | 14        |
| 27 | Calcium Desensitization Mechanism and Treatment for Vascular Hyporesponsiveness After Shock. , 2017, , 119-136.                                                                                                                                                       |     | Ο         |
| 28 | HIF-1α regulates Cx40-dependent vasodilatation following hemorrhagic shock in rats. American Journal of Translational Research (discontinued), 2017, 9, 1277-1286.                                                                                                    | 0.0 | 4         |
| 29 | Beneficial Effect of Intermedin 1-53 in Septic Shock Rats. Shock, 2016, 46, 557-565.                                                                                                                                                                                  | 2.1 | 15        |
| 30 | 4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti–Endoplasmic<br>Reticulum Stress in Septic Rats*. Critical Care Medicine, 2016, 44, e689-e701.                                                                                   | 0.9 | 38        |
| 31 | Role of miR-124 and miR-141 in the regulation of vascular reactivity and the relationship to RhoA and<br>Rac1 after hemorrhage and hypoxia. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2016, 310, H206-H216.                               | 3.2 | 20        |
| 32 | Effects of terlipressin on patients with sepsis via improving tissue blood flow. Journal of Surgical<br>Research, 2016, 200, 274-282.                                                                                                                                 | 1.6 | 48        |
| 33 | Advances in Vascular Hyporeactivity After Shock. Shock, 2015, 44, 524-534.                                                                                                                                                                                            | 2.1 | 19        |
| 34 | Protein markers related to vascular responsiveness after hemorrhagic shock in rats. Journal of<br>Surgical Research, 2015, 196, 149-158.                                                                                                                              | 1.6 | 3         |
| 35 | Identification of ideal resuscitation pressure with concurrent traumatic brain injury in a rat model of hemorrhagic shock. Journal of Surgical Research, 2015, 195, 284-293.                                                                                          | 1.6 | 12        |
| 36 | Beneficial effect of cyclosporine A on traumatic hemorrhagic shock. Journal of Surgical Research,<br>2015, 195, 529-540.                                                                                                                                              | 1.6 | 22        |

LIANGMING LIU

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Beneficial and side effects of arginine vasopressin and terlipressin for septic shock. Journal of<br>Surgical Research, 2015, 195, 568-579.                                                                                 | 1.6 | 19        |
| 38 | Lycium barbarum polysaccharide improves traumatic cognition via reversing imbalance of apoptosis/regeneration in hippocampal neurons after stress. Life Sciences, 2015, 121, 124-134.                                       | 4.3 | 25        |
| 39 | Beneficial effects of platelet-derived growth factor on hemorrhagic shock in rats and the underlying<br>mechanisms. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1277-H1287.              | 3.2 | 10        |
| 40 | Bkca opener, NS1619 pretreatment protects against shock-induced vascular hyporeactivity through<br>PDZ-Rho GEF–RhoA–Rho kinase pathway in rats. Journal of Trauma and Acute Care Surgery, 2014, 76,<br>394-401.             | 2.1 | 16        |
| 41 | Role of non-MLC20 phosphorylation pathway in the regulation ofÂvascular reactivity during shock.<br>Journal of Surgical Research, 2014, 187, 571-580.                                                                       | 1.6 | 3         |
| 42 | Role of adenosine A2A receptor in organ-specific vascular reactivity following hemorrhagic shock in<br>rats. Journal of Surgical Research, 2013, 184, 951-958.                                                              | 1.6 | 19        |
| 43 | Small Doses of Arginine Vasopressin in Combination With Norepinephrine "Buy―Time for Definitive<br>Treatment for Uncontrolled Hemorrhagic Shock in Rats. Shock, 2013, 40, 398-406.                                          | 2.1 | 31        |
| 44 | Ideal resuscitation pressure for uncontrolled hemorrhagic shock in different ages and sexes of rats.<br>Critical Care, 2013, 17, R194.                                                                                      | 5.8 | 12        |
| 45 | Mitogen-activated protein kinases regulate vascular reactivity after hemorrhagic shock through<br>myosin light chain phosphorylation pathway. Journal of Trauma and Acute Care Surgery, 2013, 74,<br>1033-1043.             | 2.1 | 17        |
| 46 | Hemorrhagic preconditioning improves vascular reactivity after hemorrhagic shock by activation of<br>PKCα and PKCε via the adenosine A1 receptor in rats. Journal of Trauma and Acute Care Surgery, 2013, 74,<br>1266-1274. | 2.1 | 4         |
| 47 | δ Opioid Receptor Antagonist, ICI 174,864, Is Suitable for the Early Treatment of Uncontrolled<br>Hemorrhagic Shock in Rats. Anesthesiology, 2013, 119, 379-388.                                                            | 2.5 | 20        |
| 48 | Angiopoietins regulate vascular reactivity after haemorrhagic shock in rats through the Tie2-nitric oxide pathway. Cardiovascular Research, 2012, 96, 308-319.                                                              | 3.8 | 30        |
| 49 | Pinacidil Pretreatment Improves Vascular Reactivity After Shock Through PKCα and PKC[Latin Small<br>Letter Open E] in Rats. Journal of Cardiovascular Pharmacology, 2012, 59, 514-522.                                      | 1.9 | 10        |
| 50 | Determination of the Optimal Mean Arterial Pressure for Postbleeding Resuscitation after<br>Hemorrhagic Shock in Rats. Anesthesiology, 2012, 116, 103-112.                                                                  | 2.5 | 29        |
| 51 | Short-term, Mild Hypothermia Can Increase the Beneficial Effect of Permissive Hypotension on Uncontrolled Hemorrhagic Shock in Rats. Anesthesiology, 2012, 116, 1288-1298.                                                  | 2.5 | 38        |
| 52 | A Small Dose of Arginine Vasopressin in Combination with Norepinephrine is a Good Early Treatment<br>for Uncontrolled Hemorrhagic Shock After Hemostasis. Journal of Surgical Research, 2011, 169, 76-84.                   | 1.6 | 21        |
| 53 | Effects of the Balance in Activity of RhoA and Rac1 on the Shock-Induced Biphasic Change of Vascular<br>Reactivity in Rats. Annals of Surgery, 2011, 253, 185-193.                                                          | 4.2 | 35        |
| 54 | Ideal Permissive Hypotension to Resuscitate Uncontrolled Hemorrhagic Shock and the Tolerance Time in Rats. Anesthesiology, 2011, 114, 111-119.                                                                              | 2.5 | 75        |

LIANGMING LIU

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | INVOLVEMENT OF CPI-17 AND ZIPPER-INTERACTING PROTEIN KINASE IN THE REGULATION OF PROTEIN KINASE C-1̂±, PROTEIN KINASE C-1̂µ ON VASCULAR CALCIUM SENSITIVITY AFTER HEMORRHAGIC SHOCK. Shock, 2010, 33, 49-55.                             | 2.1 | 26        |
| 56 | PKC plays an important mediated effect in arginine vasopressin induced restoration of vascular<br>responsiveness and calcium sensitization following hemorrhagic shock in rats. European Journal of<br>Pharmacology, 2010, 628, 148-154. | 3.5 | 27        |
| 57 | The mechanism by which RhoA regulates vascular reactivity after hemorrhagic shock in rats.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H292-H299.                                                   | 3.2 | 24        |
| 58 | Role of V1a Receptor in AVP-Induced Restoration of Vascular Hyporeactivity and Its Relationship to MLCP-MLC20 Phosphorylation Pathway. Journal of Surgical Research, 2010, 161, 312-320.                                                 | 1.6 | 25        |
| 59 | REGULATORY EFFECTS OF MYOENDOTHELIAL GAP JUNCTION ON VASCULAR REACTIVITY AFTER HEMORRHAGIC SHOCK IN RATS. Shock, 2009, 31, 80-86.                                                                                                        | 2.1 | 15        |
| 60 | Beneficial effect of arginine vasopressin on hemorrhagic shock through improving the vascular reactivity. Frontiers of Medicine in China, 2008, 2, 248-254.                                                                              | 0.1 | 1         |
| 61 | MECHANISMS OF RHO KINASE REGULATION OF VASCULAR REACTIVITY FOLLOWING HEMORRHAGIC SHOCK IN RATS. Shock, 2008, 29, 65-70.                                                                                                                  | 2.1 | 36        |
| 62 | CHANGES OF RHO KINASE ACTIVITY AFTER HEMORRHAGIC SHOCK AND ITS ROLE IN SHOCK-INDUCED<br>BIPHASIC RESPONSE OF VASCULAR REACTIVITY AND CALCIUM SENSITIVITY. Shock, 2006, 26, 504-509.                                                      | 2.1 | 43        |
| 63 | Effect of Arginine Vasopressin on Vascular Reactivity and Calcium Sensitivity After Hemorrhagic<br>Shock in Rats and Its Relationship to Rho-kinase. Journal of Trauma, 2006, 61, 1336-1342.                                             | 2.3 | 26        |
| 64 | The role of calcium desensitization in vascular hyporeactivity and its regulation after hemorrhagic shock in the rat. Shock, 2005, 23, 576-81.                                                                                           | 2.1 | 27        |
| 65 | Opioid receptors associated with cardiovascular depression following traumatic hemorrhagic shock<br>in rats. Chinese Journal of Traumatology - English Edition, 1999, 2, 48-52.                                                          | 1.4 | 2         |